1.北京服装学院 材料设计与工程学院,北京 100029
2.北京服装学院 服装艺术与工程学院,北京 100029
3.即发集团染整厂,山东 青岛 266200
4.北京伟创英图科技有限公司,北京 100070
李文霞,硕士,教授,研究方向:废旧纺织品在线近红外智能识别与自动分选技术研究,E-mail:liwenxia307@ 163.com
纸质出版日期:2024-07-15,
收稿日期:2024-03-21,
修回日期:2024-05-11,
扫 描 看 全 文
李宁宁,刘正东,王海滨,韩熹,李文霞.基于PCA+KNN和kernal-PCA+ KNN算法的废旧纺织物鉴别[J].分析测试学报,2024,43(07):1039-1045.
LI Ning-ning,LIU Zheng-dong,WANG Hai-bin,HAN Xi,LI Wen-xia.Identification of Waste Textiles Based on PCA+KNN and kernel-PCA + KNN Algorithms[J].Journal of Instrumental Analysis,2024,43(07):1039-1045.
李宁宁,刘正东,王海滨,韩熹,李文霞.基于PCA+KNN和kernal-PCA+ KNN算法的废旧纺织物鉴别[J].分析测试学报,2024,43(07):1039-1045. DOI: 10.12452/j.fxcsxb.24032104.
LI Ning-ning,LIU Zheng-dong,WANG Hai-bin,HAN Xi,LI Wen-xia.Identification of Waste Textiles Based on PCA+KNN and kernel-PCA + KNN Algorithms[J].Journal of Instrumental Analysis,2024,43(07):1039-1045. DOI: 10.12452/j.fxcsxb.24032104.
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA +KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA +KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。
The study collected 4 998 near infrared spectra of 15 types of waste textiles,which were divided into a training set and a validation set in a ratio of 7∶3,and the data were downscaled using two different downscaling methods,namely principal component analysis(PCA) and kernal principal component analysis(kernal-PCA),respectively,and the cosine similarity(cosine) kernel was selected as the best kernel function for kernal-PCA. Finally the PCA and kernal-PCA dimensionality reduction processed data are trained by k-nearest neighbour algorithm(KNN) respectively. The results show that the model accuracy of kernal-PCA +KNN(95.17%) is better than that of PCA+KNN model(92.34%) . The study shows that the kernal-PCA +KNN algorithm can achieve the improvement of the recognition accuracy of 15 types of waste textiles,and provide a strong technical support for the online near infrared automatic sorting of waste textiles.
废旧纺织物主成分分析(PCA)核主成分分析(kernel-PCA)k-近邻算法(KNN)分类识别
waste textilesprincipal component analysis(PCA)kernel principal component analysis(kernel-PCA)k-nearest neighbour(KNN) algorithmclassification recognition
Tomra. Waste Clothing Textile Sorting - Inside Sweden's Automated Fabric Sorting Plant SIPTex(陶朗. 废弃衣物纺织品分选—走进瑞典的自动化织物分选厂SIPTex).[2024-02-21]. https://www.tomra.cn/recycling/case-studies/siptex-textile-sorting/https://www.tomra.cn/recycling/case-studies/siptex-textile-sorting/.
Global Textile News. Fibersort Fabric Sorting Technology Promotes Textile Recycling Process(全球纺织资讯网. Fibersort布料分类技术推动纺织品循环再生进程). [2024-03-01]. https://www.tnet.org.tw/Article/Detail/26615https://www.tnet.org.tw/Article/Detail/26615.
Zheng J H,Du Y J,Li W X,Liu Z D,Wang H P. J. Instrum. Anal.(郑佳辉,杜宇君,李文霞,刘正东,王华平. 分析测试学报),2020,39(11):1365-1370.
Du W Q. Research on On-line Near-infrared Intelligent Identification and Efficient Sorting Technology of Waste Textiles. Beijing:Beijing Institute of Fashion Technology(杜文倩. 废旧纺织品在线近红外智能识别与高效分选技术研究. 北京:北京服装学院),2021.
Wang Y. Establishment of Online NIR Analysis Model and Prediction Test for Waste Textiles. Beijing:Beijing Institute of Fashion Technology(王悦. 废旧纺织品在线NIR分析模型的建立及预测检验. 北京:北京服装学院),2022.
Ke C Y,Liu L S,Lin H,Zhang R S. J. Fujian Coll. Eng. (柯程扬,刘丽桑,林赫,张荣升.福建工程学院学报),2021,19(6):568-573.
Ma S P,Ju Z Y,Wang G. J. Xi'an Electron. Sci. Technol. Univ.(马素萍,巨志勇,王告. 西安电子科技大学学报),2019,32(11):1-6.
FZ/T 01057.8-2012. Test Method for Identification of Textile Fibres. Part 8. Infrared Spectrometry. The People's Republic of China Textile Industry Standard(纺织纤维鉴别试验方法 第8部分:红外光谱法. 中华人民共和国纺织行业标准).
Tian Q,Ma X H,Yuan J J,Long Y,Hong W X,Lu Y Y. Food Ind. Sci. Technol.(田琼,马新华,袁俊杰,龙阳,洪武兴,卢韵宇. 食品工业科技),2021,42(9):270-274.
Liu Z T,Xu J P,Wu M,Cao W H,Chen L F,Ding X W,Hao M,Xie Q. J. Comput.(刘振焘,徐建平,吴敏,曹卫华,陈略峰,丁学文,郝曼,谢桥. 计算机学报),2018,41(12):2833-2851.
Yu L,Hong Y S,Geng L,Zhou Y,Zhu Q,Cao J J,Nie Y. Trans. Chin. Soc. Agric. Eng.(于雷,洪永胜,耿雷,周勇,朱强,曹隽隽,聂艳. 农业工程学报),2016,32(13):95-102.
Li W P,Yang J,Wang G. Microelectron. Comput.(李卫平,杨杰,王钢. 微电子学与计算机),2020,32(4):56-60.
Xiong Z M,Guo H Y,Wu Y X. Comput. Eng. Appl.(熊中敏,郭怀宇,吴月欣.计算机工程与应用),2021,57(14):27-38.
Yin A J,Shi B,Tan J,Li H Z. Noise Vib. Control(尹爱军,石波,谭建,李海珠. 噪声与振动控制),2020,40(6):128-133.
Zhang B H,Xia H X,Zhang Y,Gao Z G. Comput. Syst. Appl.(张碧洪,夏海霞,张宇,高志刚. 计算机系统应用),2023,32(6):42-50 .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构