1.暨南大学 质谱仪器与大气环境研究所,广东 广州 510632
2.广东省麦思科学仪器创新研究院, 广东 广州 510530
李 磊,博士,副研究员,研究方向:质谱仪器研制与质谱应用,E-mail:lileishdx@163.com
纸质出版日期:2024-06-15,
收稿日期:2024-02-22,
修回日期:2024-03-27,
扫 描 看 全 文
黄罗旭,苏展民,杜绪兵,黄正旭,李梅,周振,李雪,李磊.用于生物气溶胶质谱检测的泵送逆流虚拟切割器研究[J].分析测试学报,2024,43(06):913-920.
HUANG Luo-xu,SU Zhan-min,DU Xu-bing,HUANG Zheng-xu,LI Mei,ZHOU Zhen,LI Xue,LI Lei.Research on Pumped Counterflow Virtual Impactor for Bioaerosol Mass Spectrometry Detection[J].Journal of Instrumental Analysis,2024,43(06):913-920.
黄罗旭,苏展民,杜绪兵,黄正旭,李梅,周振,李雪,李磊.用于生物气溶胶质谱检测的泵送逆流虚拟切割器研究[J].分析测试学报,2024,43(06):913-920. DOI: 10.12452/j.fxcsxb.24022204.
HUANG Luo-xu,SU Zhan-min,DU Xu-bing,HUANG Zheng-xu,LI Mei,ZHOU Zhen,LI Xue,LI Lei.Research on Pumped Counterflow Virtual Impactor for Bioaerosol Mass Spectrometry Detection[J].Journal of Instrumental Analysis,2024,43(06):913-920. DOI: 10.12452/j.fxcsxb.24022204.
单颗粒气溶胶质谱仪(SPAMS)可以提供高时间分辨率和高灵敏度的颗粒物粒径分布和质谱数据组成,广泛应用于大气气溶胶检测和大气科学研究领域。大气环境中的微米级大颗粒数浓度远小于亚微米级小颗粒物,在单颗粒气溶胶质谱的检测中,颗粒经空气动力学加速赋能后,小颗粒物的飞行速度大于大颗粒物,导致生物气溶胶等大颗粒的检测几率大幅度降低。该研究设计了一种泵送逆流虚拟切割器(PCVI),通过3D建模、计算流体动力学(CFD)仿真、实际实验测试以及对实际样品藻类气溶胶的检测,详细介绍了PCVI的实现原理、数据仿真、性能验证与实际应用。PCVI与SPAMS联用,可形成对小颗粒物具有切割能力的PCVI-SPAMS系统,对藻类生物气溶胶的检测证实,所研制的PCVI可以有效去除2 μm粒径以下的颗粒,成功对小颗粒背景进行切分,获得了符合预期的效果。
Single particle aerosol mass spectrometer(SPAMS) can provide high time resolution and high sensitivity characteristics of particle size distribution and mass spectrometry composition data,and is widely used in the fields of atmospheric aerosol detection and atmospheric scientific research. In the atmospheric environment,sedimentation causes the concentration of large micron-sized particles in the air to be much smaller than that of small sub-micron-sized particles,and there is an order of magnitude difference in the number of particles. In the detection of single particle aerosol mass spectrometry,particles are accelerated through aerodynamics and empowered,which makes small particles fly faster than large particles. This ultimately leads to a significant reduction in the detection probability of single particle mass spectrometry when analyzing large particles such as bioaerosols.Therefore,how to separate large particles from small particles has become the key to improving the effective detection of bioaerosol large particles by SPAMS. This study designed a pumped counterflow virtual impactor(PCVI). Through 3D modeling,computational fluid dynamics(CFD) simulation,actual experimental testing and detection of algae aerosol,the implementation principle,data simulation,and performance verification and practical application. It is combined with SPAMS to form a PCVI-SPAMS system with cutting capabilities for fine particles. Algae bioaerosol detection has confirmed that the developed PCVI can effectively remove particles with a minimum particle size of less than 2 μm,successfully segment the background of small particles,and achieve expected results.
单颗粒气溶胶质谱(SPAMS)泵送逆流虚拟切割器(PCVI)粒径筛分生物气溶胶检测
single particle aerosol mass spectrometer(SPAMS)pumped counterflow virtual impactor(PCVI)particle size screeningbioaerosol detection
Nash D G,Baer T,Johnston M V. Int. J. Mass Spectrom.,2006,258(1/3):2-12.
Murphy D M. Mass Spectrom. Rev.,2007,26(2):150-165.
Pratt K A,Prather K A. Mass Spectrom. Rev.,2012,31(1):17-48.
Wang F,Yu H F,Wang Z Y,Liang W Q,Shi G L,Gao J,Li M,Feng Y C. Sci. Total Environ.,2021,762:144095.
Xu J,Wang H T,Li X J,Li Y,Wen J,Zhang J S,Shi X R,Li M,Wang W,Shi G L,Feng Y C. Sci .Total Environ.,2018,627:633-646.
Huang Z X,Li M,Li L,Gao W,Nian H Q,Fu Z,Dong J G,Zhou Z. J. Shanghai Univ. (黄正旭,李梅,李磊,高伟,粘慧青,傅忠,董俊国,周振. 上海大学学报),2011,17(4):562-566.
Von Schneidemesser E,Driscoll C,Rieder H E,Schiferl L D. Philos. Trans. R. Soc. A,2020,378(2183):20190330.
Lu H L,Su Z M,Li L,Li X. Anal. Chem.,2022,94(51):17861-17867.
Bi X H,Lin Q H,Peng L,Zhang G H,Wang X M,Brechtel F J,Chen D H,Li M,Peng P A,Sheng G Y,Zhou Z. J. Geophys. Res. Atmos.,2016,121(15):9105-9116.
Li J R,Wang X F,Chen J M,Zhu C,Li W J,Li C B,Liu L,Xu C H,Wen L,Xue L K,Ding A J,Herrmann H. Atmos. Chem. Phys.,2017,17(16):9885-9896.
Yuan Z C,Hu B. J. Anal. Test.,2021,5(4):287-297.
Bauer H,Kasper G A,Löflund M,Giebl H,Hitzenberger R,Zibuschka F,Puxbaum H. Atmos. Res.,2002,64(1/4):109-119.
Su Y,Sipin M F,Furutani H,Prather K A. J. Mech. Sci. Technol.,2004,76(3):712-719.
Yang Y X,Peng X C,Zhang G H,Hu X D,Guo Z Y,Sun W,Fu Y Z,Jiang F,Ou J,Ding X,Wang X M,Bi X H. Appl. Geochem.,2023,152:105657.
Ogren J A,Heintzenberg J,Charlson R J. Geophys. Res. Lett.,1985,12(3):121-124.
Ogren J A,Heintzenberg J,Zuber A,Noone K J,Charlson R J. Tellus B:Chem. Phys.Meteorol.,1988,41(1):24-31.
Anderson T L,Charlson R J,Covert D S. Aerosol Sci. Technol.,1993,19(3):317-329.
Twohy C H,Schanot A J,Cooper W A. J. Atmos. Oceanic Technol.,1997,14(1):197-202.
Boulter J,Cziczo D,Middlebrook A,Thomson D,Murphy D. Aerosol Sci. Technol.,2006,40(11):969-976.
Kulkarni G,Pekour M,Afchine A,Murphy D M,Cziczo D J. Aerosol Sci. Technol.,2011,45(3):382-392.
Hiranuma N,Möhler O,Kulkarni G,Schnaiter M,Vogt S,Vochezer P,Järvinen E,Wagner R,Bell D M,Wilson J. Atmos. Meas. Tech.,2016,9(8):3817-3836.
Zhu H,Du X B,Su Z M,Chen J S,Lu H L,Huang Z X,Zhou Z,Li L. J. Chin. Mass Spectrom. Soc. (朱灏,杜绪兵,苏展民,陈剑松,卢瀚仑,黄正旭,周振,李磊. 质谱学报),2023,44(2):223.
Cahill J F,Darlington T K,Fitzgerald C,Schoepp N G,Beld J,Burkart M D,Prather K A. Anal. Chem.,2015,87(16):8039-8046.
Schneider J,Freutel F,Zorn S,Chen Q,Farmer D,Jimenez J,Martin S,Artaxo P,Wiedensohler A,Borrmann S. Atmos. Chem. Phys. Discuss.,2011,11:19143-19178.
Bohman B,Flematti G R,Barrow R A. J. Mass Spectrom.,2015,50(8):987-993.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构