1.武汉理工大学 理学院,湖北 武汉 430070
2.布鲁克(北京)科技有限公司,北京 100192
3.中国科学院精密测量科学与技术创新研究院,湖北 武汉 430071
张正逢,副研究员,研究方向:分析化学/磁共振波谱,E-mail:zhangzf@wipm.ac.cn
纸质出版日期:2024-06-15,
收稿日期:2023-12-15,
修回日期:2024-02-17,
扫 描 看 全 文
宋佩君,易迎彦,王秀梅,张正逢.高速魔角旋转下基于组合π脉冲的射频驱动重耦同核双量子固体NMR相关实验研究[J].分析测试学报,2024,43(06):898-904.
SONG Pei-jun,YI Ying-yan,WANG Xiu-mei,ZHANG Zheng-feng.Study of Radio Frequency-driven Recoupling Homonuclear Double-quantum Solid-state NMR Correlation Experiments Based on Composite π Pulses at High Magic-angle-spinning Speed[J].Journal of Instrumental Analysis,2024,43(06):898-904.
宋佩君,易迎彦,王秀梅,张正逢.高速魔角旋转下基于组合π脉冲的射频驱动重耦同核双量子固体NMR相关实验研究[J].分析测试学报,2024,43(06):898-904. DOI: 10.12452/j.fxcsxb.23121558.
SONG Pei-jun,YI Ying-yan,WANG Xiu-mei,ZHANG Zheng-feng.Study of Radio Frequency-driven Recoupling Homonuclear Double-quantum Solid-state NMR Correlation Experiments Based on Composite π Pulses at High Magic-angle-spinning Speed[J].Journal of Instrumental Analysis,2024,43(06):898-904. DOI: 10.12452/j.fxcsxb.23121558.
该文提出了一种改进固体核磁共振(NMR)实验中射频驱动重耦(RFDR)序列的方法。以组合π脉冲替代传统的单一矩形π脉冲作为RFDR序列的基本构成单元,并选择若干个适用于高速魔角旋转条件的组合π脉冲,在RFDR双量子实验中进行全面研究,通过数值模拟分析了影响RFDR双量子实验性能的两个关键因素——共振偏置和射频场不均匀性,并根据模拟结果确定了性能最优的组合π脉冲。结合六氟硅酸钠和
L
-组氨酸的一维和二维
19
F或
1
H固体NMR实验,验证了在高速魔角旋转条件下选择适当的组合π脉冲的RFDR序列的优势。该方法不仅能确保较高的同核双量子激发效率,还能提高激发带宽,并且对射频场不均匀性更加不敏感。稳定高效的RFDR同核双量子相关实验为采用固体NMR分析强自旋耦合体系的核间相互作用提供了重要的技术支持。
This study presents a way to improve the performance of radio frequency-driven recoupling(RFDR) sequences in solid-state nuclear magnetic resonance(NMR) spectroscopy. Traditional RFDR sequences typically employ single rectangular π pulses,which may prove to be inefficient,especially in experiments under high-speed magic angle spinning(MAS) conditions that have become more popular in recent years. To address this issue,we proposed using composite π pulses to replace the traditional single rectangular π pulses in RF
DR sequences. The updated RFDR sequence enables more precise control over nuclei spins and provides better performance in double-quantum(DQ) experiments compared to the traditional module based on single rectangular π pulses. Our focus was specifically on the investigation of multiple composite π pulses,which are suitable for use under high-speed MAS conditions. To evaluate the efficacy of DQ excitation of these composite π pulses within the RFDR sequence,we conducted a comprehensive investigation by using numerical simulations and experiments. Initially,we analyzed the impact of two critical factors on the performance of RFDR in DQ excitation experiments:resonance offset and radio frequency(RF) field inhomogeneity. The resonance offset signifies the difference between the nuclei Larmor frequency and the frequency of the applied RF field,while the RF field inhomogeneity describes the variations in RF field strength throughout the sample. Through a comparative analysis of outcomes from a single rectangular π pulse and multiple composite π pulses,we identified a promising RFDR sequence based on a composite π pulse. Subsequently,this optimized RFDR sequence was integrated into DQ experiments and tested via one-dimensional(1D) and two-dimensional(2D) experiments on
19
F for sodium hexafluorosilicate or
1
H for
L
-histidine. The results confirmed that,under high-speed MAS conditions,the RFDR sequence with appropriate composite π pulses can offer several advantages over the traditional RFDR with single rectangular π pulses. Firstly,it achieves higher efficiency in homonuclear DQ excitation,resulting in a significant reduction in experimental time. Secondly,it improves the DQ excitation bandwidth,allowing for improved excitation of nuclei across a broader range of chemical shifts. Lastly,it exhibits good tolerance to RF field inhomogeneity,simplifying experimental setup and facilitating extended experimental durations. In summary,this study explored the efficacy of composite π pulses
in optimizing RFDR sequences under high-speed MAS. The utilization of composite π pulse in RFDR sequences enhances robustness and efficiency in DQ correlation experiments,which provides crucial technical support for investigating nuclear interactions within strongly coupled spin systems present in diverse solid-state materials.
固体核磁共振魔角旋转组合脉冲偶极重耦双量子-单量子相关射频驱动重耦(RFDR)
solid-state NMRmagic-angle-spinningcomposite pulsesdipolar recouplingdouble-quantum single-quantum correlationradio frequency-driven recoupling
Wong K C. J. Chem. Educ.,2014,91(6):1103-1104.
Duan P,Chen K J,Wijegunawardena G,Dregni A J,Wang H K,Wu H,Hong M. J. Am. Chem. Soc.,2022,144(3):1416-1430.
Li M Y,Xu W,Su Y C. Trends Anal. Chem. ,2021,135:116152.
Jaegers N R,Mueller K T,Wang Y,Hu J Z. Acc. Chem. Res.,2020,53(3):611-619.
Wei L,Zhang C N,Li K Y,Wei T T,Qi S K,Wang Y L,Wang Q. J. Instrum. Anal.(魏亮,张超楠,李科研,位婷婷,祁少可,王艳丽,王强. 分析测试学报) ,2022,41(5):774-780.
Zhang P,Chen Y,Luo W. J. Instrum. Anal.(张鹏,陈媛,罗维. 分析测试学报), 2020,39(8):1050-1057.
Nishiyama Y,Hou G J,Agarwal V,Su Y C,Ramamoorthy A. Chem. Rev.,2022,123(3):918-988.
Samoson A. J. Magn. Reson.,2019,306:167-172.
Zhang Z F,Oss A,Org M L,Samoson A,Li M Y,Tan H,Su Y C,Yang J. J. Phys. Chem. Lett. ,2020,11(19):8077-8083.
Liang L X,Ji Y,Chen K Z,Gao P,Zhao Z C,Hou G J. Chem. Rev.,2022,122(10):9880-9942.
Mao K M,Wiench J W,Lin V S Y,Pruski M. J. Magn. Reson.,2009,196(1):92-95.
Hu B W,Wang Q,Lafon O,Trébosc J,Deng F,Amoureux J P. J. Magn. Reson.,2009,198(1):41-48.
Yan Z,Zhang R C. J. Phys. Chem. Lett.,2021,12(50):12067-12074.
Zheng M J,Zeng S Q,Wang X M,Gao X Z,Wang Q,Xu J,Deng F. Magn. Reson. Lett.,2022,2(4):266-275.
Wang Q,Hu B W,Lafon O,Trébosc J,Deng F,Amoureux J P. J. Magn. Reson.,2009,200(2):251-260.
Wang Q,Li W Z,Hung I,Mentink-Vigier F,Wang X L,Qi G D,Wang X,Gan Z H,Xu J,Deng F. Nat. Commun.,2020,11:3620.
Xiao H,Zhang Z F,Kang H M,Yang J. Chemphyschem,2023,24(16):e202300141.
Schnell I. Prog. Nucl. Magn. Reson. Spectrosc.,2004,45(1):145-207.
Carravetta M,Edén M,Johannessen O G,Luthman H,Verdegem P J E,Lugtenburg J,Sebald A,Levitt M H. J. Am. Chem. Soc.,2001,123(43):10628-10638.
Mafra L,Siegel R,Fernandez C,Schneider D,Aussenac F,Rocha J. J. Magn. Reson.,2009,199(1):111-114.
Levitt M H. Prog. Nucl. Magn. Reson. Spectrosc.,1986,18:61-122.
Bando M,Ichikawa T,Kondo Y,Nemoto N,Nakahara M,Shikano Y. Sci. Rep.,2020,10(1):2126.
Ji Y,Liang L X,Bao X H,Hou G J. Solid State Nucl. Magn. Reson.,2021,112:101711.
Zhang R C,Nishiyama Y,Sun P C,Ramamoorthy A. J. Magn. Reson.,2015,252:55-66.
Bennett A E,Rienstra C M,Griffiths J M,Zhen W G,Lansbury P T,Griffin R G. J. Chem. Phys.,1998,108(22):9463-9479.
Bennett A E,Ok J H,Griffin R G,Vega S. J. Chem. Phys.,1992,96(11):8624-8627.
Tseng Y H,Mou Y,Mou C Y,Chan J C C. Solid State Nucl. Magn. Reson.,2005,27(4):266-270.
Hu B W,Delevoye L,Lafon O,Trébosc J,Amoureux J P. J. Magn. Reson.,2009,200(2):178-188.
Martineau C,Legein C,Buzaré J Y,Fayon F. Phys. Chem. Chem. Phys.,2009,11(6):950-957.
Griffin J M,Yates J R,Berry A J,Wimperis S,Ashbrook S E. J. Am. Chem. Soc.,2010,132(44):15651-15660.
Roos M,Wang T,Shcherbakov A A,Hong M. J. Phys. Chem. B,2018,122(11):2900-2911.
Shen M,Hu B W,Lafon O,Trébosc J,Chen Q,Amoureux J P. J. Magn. Reson.,2012,223:107-119.
Zhang R C,Nishiyama Y,Sun P C,Ramamoorthy A. J. Magn. Reson.,2015,252:55-66.
States D J,Haberkorn R A,Ruben D J. J. Magn. Reson.,1982,48(2):286-292.
Bak M,Rasmussen J T,Nielsen N C. J. Magn. Reson.,2000,147(2):296-330.
Kristiansen P E,Carravetta M,van Beek J D,Lai W C,Levitt M H. J. Chem. Phys.,2006,124(23):234510.
Pileio G,Concistrè M,McLean N,Gansmülller A,Brown R C D,Levitt M H. J. Magn. Reson.,2007,186(1):65-74.
Bak M,Nielsen N C. J. Magn. Reson.,1997,125(1):132-139.
0
浏览量
20
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构