延安大学 化学与化工学院,陕西省化学反应工程重点实验室,陕西 延安 716000
白万乔,博士,讲师,研究方向:传感分析,E-mail:baiwanqiao@yau.edu.cn
高楼军,教授,研究方向:功能材料,E-mail:glj@yau.edu.cn
纸质出版日期:2024-04-15,
收稿日期:2023-11-24,
修回日期:2023-12-27,
扫 描 看 全 文
李春雨,赵卓君,白万乔,高楼军.基于Eu3+-生物质碳量子点探针的比率型荧光传感体系检测盐酸四环素[J].分析测试学报,2024,43(04):600-606.
LI Chun-yu,ZHAO Zhuo-jun,BAI Wan-qiao,GAO Lou-jun.A Ratiometric Fluorescence Sensing System Based on Eu3+-Biomass Carbon Dot Probe for the Detection of Tetracycline Hydrochloride[J].Journal of Instrumental Analysis,2024,43(04):600-606.
李春雨,赵卓君,白万乔,高楼军.基于Eu3+-生物质碳量子点探针的比率型荧光传感体系检测盐酸四环素[J].分析测试学报,2024,43(04):600-606. DOI: 10.12452/j.fxcsxb.23112412.
LI Chun-yu,ZHAO Zhuo-jun,BAI Wan-qiao,GAO Lou-jun.A Ratiometric Fluorescence Sensing System Based on Eu3+-Biomass Carbon Dot Probe for the Detection of Tetracycline Hydrochloride[J].Journal of Instrumental Analysis,2024,43(04):600-606. DOI: 10.12452/j.fxcsxb.23112412.
该文以橙皮为原料制备的碳量子点(CDs)与铕离子(Eu
3+
)构建双发射比率型荧光探针(Eu
3+
-CDs)并用于抗生素盐酸四环素的检测。在370 nm激发波长下,Eu
3+
-CDs荧光探针在425 nm处出现较强的蓝色荧光峰,在617 nm处出现较弱的红色荧光峰。随着盐酸四环素浓度的逐渐增大,Eu
3+
与盐酸四环素螯合形成的配合物增多,在425 nm处的CDs荧光(
I
F425
)逐渐减弱,而617 nm处铕配合物的荧光(
I
F617
)逐渐增强,可基于荧光强度比
I
F617
/
I
F425
的变化对盐酸四环素进行测定。考察了Eu
3+
的浓度、pH值和反应时间对探针荧光强度的影响。在最佳条件下,该双发射比率型荧光探针对盐酸四环素具有特异性识别能力,荧光强度比
(I
F617
/
I
F425
)与盐酸四环素浓度在10~100 μmol/L范围内存在良好的线性关系,相关系数
r
2
= 0.992 6,检出限为5.09 μmol/L。该方法成功用于猪肉中盐酸四环素含量的检测,加标回收率为102%~110%,相对标准偏差为0.20%~2.4%,具有较好的实用性。
Carbon quantum dots(CDs) prepared from orange peel were employed to construct a dual-emission ratiometric fluorescent probe(Eu
3+
-CDs) with europium ions(Eu
3+
) for the detection of the antibiotic tetracycline hydrochloride. The Eu
3+
-CDs fluorescent probe exhibits two distinct fluorescence peaks at 370 nm excitation:a robust blue peak at 425 nm and a comparatively moderate red peak at 617 nm. With the concentration of tetracycline hydrochloride increased,Eu
3+
chelated with tetracycline hydrochloride to form more complexes. As a result,the fluorescence of CDs at 425 nm(
I
F425
) steadily dropped while that of europium complexes at 617 nm(
I
F617
) increased. This variation in fluorescence intensity ratio of
I
F617
/
I
F425
allowed for the measurement of the tetracycline hydrochloride content. The effects of Eu
3+
concentration,pH value and reaction time on the fluorescence intensity were investigated.Under the optimal conditions,the dual-emission ratiometric fluorescent probe had a specific recognition ability for tetracycline hydrochloride. A good linear relationship between the fluorescence intensity ratio(
I
F617
/
I
F425
) and the concentration of tetracycline hydrochloride(10-100 μmol/L) was obtained. The linear equation was
I
F617
/
I
F425
= 0.015 61
c
(μmol/L) + 0.050 81,and the linear correlation coefficient was
r
2
= 0.992 6 with the detection limit of 5.09 μmol/L. The method was successfully utilized to detect the content of tetracycline hydrochloride in pork with the spiked recoveries of 102% to 110% and the relative standard deviations of 0.20%-2.4%.
双发射比率型荧光探针碳量子点(CDs)铕离子(Eu3+)盐酸四环素
dual-emission ratiometric fluorescence probecarbon quantum dots(CDs)europium ion(Eu3+)tetracycline hydrochloride
Hong C Y,Zhang X X,Ye S S,Yang H F,Huang Z Y,Yang D,Cai R,Tan W H. ACS Appl. Mater. Inter.,2021,13(17):19695-19700.
Kim N,Cha B,Yea Y,Njaramba L K,Vigneshwaran S,Elanchezhiyan S S,Park C M. Chem. Eng. J.,2022,450:138068.
Pérez-Rodríguez M,Pellerano R G,Pezza L,Pezza H R. Talanta,2018,182:1-21.
LaPlante K L,Dhand A,Wright K,Lauterio M. Ann. Med.,2022,54(1):1686-1700.
Watkins R R,Deresinski S. Clin. Infect. Dis.,2019,69(5):890-896.
Rusu A,Buta E L. Pharmaceutics,2021,13(12):2085.
Li P Y,Rao D M,Wang Y M,Hu X R. Microchem. J.,2022,173:106935.
Díaz-Quiroz C A,Hernandez-Chavez J F,Ulloa-Mercado G,Gortáres-Moroyoqui P,Martínez-Macías R,Meza-Escalante E,Serrano-Palacios D. J. Chromatogr. B,2018,1092:386-393.
Mokh S,Hawari K E,Rahim H A,Iskandarani M A,Jaber F. Food Addit. Contam. B,2020,13(2):121-129.
Meyer V K,Chatelle C V,Weber W,Niessner R,Seidel M. Anal. Bioanal. Chem.,2020,412:3467-3476.
Song J L,Huang M H,Lin X H,Li S F Y,Jiang N,Liu Y B,Guo H D,Li Y M. Chem. Eng. J.,2022,427:130913.
Anwar S,Ding H Z,Xu M S,Hu X L,Li Z Z,Wang J M,Liu L,Jiang L,Wang D,Dong C,Yan M Q,Wang Q Y,Bi H. ACS Appl. Bio Mater.,2019,2(6):2317-2338.
Shim H S,Choi J,Jeong S,Nam S,Kim J,Song J K. ACS Appl. Nano Mater.,2023,6(18):17120-17129.
Khan M E,Mohammad A,Yoon T. Chemosphere,2022,302:134815.
Chaudhary N,Gupta P K,Eremin S,Solanki P R. J. Environ. Chem. Eng.,2020,8(3):103720.
Al-Hashimi B,Omer K M,Rahman H S. Arab. J. Chem.,2020,13(4):5151-5159.
Gu L,Zhang J R,Yang G X,Tang Y Y,Zhang X,Huang X Y,Zhai W L,Fodjo E K,Kong C. Food Chem.,2022,376:131898.
Yang K R,Jia P,Hou J J,Bu T,Sun X Y,Liu Y N,Wang L. ACS Sustain. Chem. Eng.,2020,8(46):17185-17193.
Park S H,Kwon N,Lee J H,Yoon J,Shin I. Chem. Soc. Rev.,2020,49(1):143-179.
Liu J,Kong T Y,Xiong H M. Adv. Mater.,2022,34(16):2200152.
Zhao L N,Qiu L,Wang Y Y,Ge S J,Yao Q Z,Zhou Y M. ChemistrySelect,2022,7(21):e202104524.
Zhu Z Q,Yang P,Li X H,Luo M,Zhang W,Chen M Z,Zhou X Y. Spectrochim. Acta A,2020,227:117659.
Qi H Y,Huang D M,Jing J,Ran M X,Jing T,Zhao M,Zhang C Q,Sun X N,Samid R,Benajiba N. RSC Adv.,2022,12(12):7574-7583.
Kundu A,Park B,Oh J,Sankar K V,Ray C,Kim W S,Jun S C. Carbon,2020,156:110-118.
Thanasarakhan W,Kruanetr S,Deming R L,Liawruangrath B,Wangkarn S,Liawruangrath S. Talanta,2011,84(5):1401-1409.
Kushikawa R T,Silva M R,Angelo A C D,Teixeira M F S. Sens. Actuators B,2016,228:207-213.
Wang Z,Zhang C C,Gao J,Wang Q. J. Lumin.,2017,190:115-122.
Yan Y,Liu J H,Li R S,Li Y F,Huang C Z,Zhen S J. Anal. Chim. Acta,2019,1063:144-151.
Wang Z,Lin J,Gao J,Wang Q. Mater. Chem. Phys.,2016,178:82-87.
Deng X,Huang X M,Deng Z H,Gong A J,Chen W. J. Instrum. Anal.(邓祥,黄小梅,邓子禾,龚安界,陈伟. 分析测试学报),2023,42(6):736-742.
Wan Z X,Cai Z Z,Dou X C. J. Instrum. Anal.(万知欣,蔡珍珍,窦新存. 分析测试学报),2022,41(2):290-298.
Zhang J,Lu X,Lei Y,Hou X,Wu P. Nanoscale,2017,9(40):15606-15611.
Li L,Li M,Yang M L,Li H L,Zhang H,Ma Y,Lin L E,Zhang M. Chin. J. Anal. Chem.(李莉,李猛,杨明利,李洪雷,张焕,马跃,林乐儿,张明. 分析化学),2023,51(2):296-304.
0
浏览量
35
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构