1.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京 100085
2.中国科学院大学, 北京 100049
3.江汉大学 环境与健康学院,湖北 武汉 430056
陆达伟,博士,研究员,研究方向:环境分析化学,E-mail:dwlu@rcees.ac.cn
纸质出版日期:2024-03-15,
收稿日期:2023-11-07,
修回日期:2023-12-05,
扫 描 看 全 文
左培杰,黄俞铭,李翔宇等.基于电感耦合等离子体质谱的大气细颗粒物的多维表征研究进展[J].分析测试学报,2024,43(03):501-510.
ZUO Pei-jie,HUANG Yu-ming,LI Xiang-yu,et al.Recent Advance in Multi-dimensional Characterization on Atmospheric Fine Particulate Matter Based on Inductively Coupled Plasma Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(03):501-510.
左培杰,黄俞铭,李翔宇等.基于电感耦合等离子体质谱的大气细颗粒物的多维表征研究进展[J].分析测试学报,2024,43(03):501-510. DOI: 10.12452/j.fxcsxb.23110703.
ZUO Pei-jie,HUANG Yu-ming,LI Xiang-yu,et al.Recent Advance in Multi-dimensional Characterization on Atmospheric Fine Particulate Matter Based on Inductively Coupled Plasma Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(03):501-510. DOI: 10.12452/j.fxcsxb.23110703.
大气细颗粒物(PM
2.5
)作为影响全球人群健康的主要污染物之一,在环境中高度动态且其化学组成、形貌特征及来源非常复杂。对复杂环境基质中PM
2.5
关键组分的实时分析、粒径表征、精准溯源及原位识别等多维表征一直存在严峻的方法学挑战。电感耦合等离子体质谱(ICP-MS)技术具有高灵敏度、高通量、线性范围宽等优势,是分析PM
2.5
的有力工具。近年来,ICP-MS技术在进样系统、碰撞反应池技术、单颗粒分析、多接收器检测技术、激光剥蚀联用技术等方面取得了快速发展,实现了对PM
2.5
中关键组分的实时和原位分析,并能够对其粒径、数量和同位素指纹进行准确识别。为此,该研究综述了近年来ICP-MS技术在PM
2.5
多维分析中的最新应用进展,总结了相应的原理及注意事项,并针对未来的研究进行了展望。为丰富PM
2.5
溯源、转化及健康风险研究提供了参考。
Atmospheric fine particulate matter(PM
2.5
),as one of the major pollutants that seriously affect the human health. PM
2.5
are highly dynamic in the environment,and their chemical composition,morphology,and sources are extremely complex. It is a challenging task that making multidimensional characterization,e.g.,real-time analysis,particle size characterization,precise source tracing,and
in-situ
identification,on the critical components of PM
2.5
in complex environmental matrix. Inductively coupled plasma mass spectrometry(ICP-MS) is a powerful tool for PM
2.5
analysis due to its high sensitivity,high throughput,wide linearity range. In recent years,the ICP-MS techniques showed a rapid development,e.g.,optimization in sampling system,single particle analysis,collision and reaction cell,multi
-
collector,and laser ablation technique. In this way,we can perform real time and
in-situ
characterization on PM
2.5
. Moreover,the diameter,particle number,and even isotopic fingerprints of PM
2.5
can also be identified based on ICP-MS. Thus,this study reviews the recent advances in multidimensional characterization on PM
2.5
with ICP-MS,summarizes the principle and notes in using ICP-MS. Moreover,we also provide a perspective for future research in multidimensional characterization on PM
2.5
with ICP-MS. This review enhances the tool box for studying the transformation,health effect,and source racing of PM
2.5
.
电感耦合等离子体质谱大气细颗粒物单颗粒分析原位分析同位素分析
inductively coupled plasma mass spectrometry(ICP-MS)PM2.5single particle analysisin-situ analysisisotope analysis
Huang R J,Zhang Y L,Bozzetti C,Ho K F,Cao J J,Han Y M,Daellenbach K R,Slowik J G,Platt S M,Canonaco F,Zotter P,Wolf R,Pieber S M,Bruns E A,Crippa M,Ciarelli G,Piazzalunga A,Schwikowski M,Abbaszade G,Schnelle-Kreis J,Zimmermann R,An Z S,Szidat S,Baltensperger U,El Haddad I,Prevot A S. Nature,2014,514(7521):218-222.
Lu D W,Luo Q,Chen R,Zhuansun Y X,Jiang J,Wang W C,Yang X Z,Zhang L Y,Liu X L,Li F,Liu Q,Jiang G B. Nat. Commun.,2020,11(1):2567.
Calderon-Garciduenas L,Gonzalez-Maciel A,Mukherjee P S,Reynoso-Robles R,Perez-Guille B,Gayosso-Chavez C,Torres-Jardon R,Cross J V,Ahmed I A M,Karloukovski V V,Maher B A. Environ. Res.,2019,176:108567.
Maher B A,Ahmed I A,Karloukovski V,Maclaren D A,Foulds P G,Allsop D,Mann D M,Torres-Jardon R,Calderon-Garciduenas L. Proc. Natl. Acad. Sci. USA,2016,113(39):10797-10801.
Shi L H,Wu X,Danesh-Yazdi M,Braun D,Abu Awad Y,Wei Y,Liu P F,Di Q,Wang Y,Schwartz J,Dominici F,Kioumourtzoglou M-A,Zanobetti A. Lancet Planet Health,2020,4(12):e557-e565.
Ma Y H,Chen H S,Liu C,Feng Q S,Feng L,Zhang Y R,Hu H,Dong Q,Tan L,Kan H D,Zhang C,Suckling J,Zeng Y,Chen R ,Yu J T. Biol. Psychiatry,2023,93(9):780-789.
Burnett R,Chen H,Szyszkowicz M,Fann N,Hubbell B,Pope C A,3rd,Apte J S,Brauer M,Cohen A,Weichenthal S,Coggins J,Di Q,Brunekreef B,Frostad J,Lim S S,Kan H D,Walker K D,Thurston G D,Hayes R B,Lim C C,Turner M C,Jerrett M,Krewski D,Gapstur S M,Diver W R,Ostro B,Goldberg D,Crouse D L,Martin R V,Peters P,Pinault L,Tjepkema M,Van Donkelaar A,Villeneuve P J,Miller A B,Yin P,Zhou M G,Wang L J,Janssen N A H,Marra M,Atkinson R W,Tsang H,Quoc Thach T,Cannon J B,Allen R T,Hart J E,Laden F,Cesaroni G,Forastiere F,Weinmayr G,Jaensch A,Nagel G,Concin H,Spadaro J V. Proc. Natl. Acad. Sci. USA,2018,115(38):9592-9597.
Cohen A J,Brauer M,Burnett R,Anderson H R,Frostad J,Estep K,Balakrishnan K,Brunekreef B,Dandona L,Dandona R,Feigin V,Freedman G,Hubbell B,Jobling A,Kan H D,Knibbs L,Liu Y,Martin R,Morawska L,Pope C A,Shin H,Straif K,Shaddick G,Thomas M,Van Dingenen R,Van Donkelaar A,Vos T,Murray C J L,Forouzanfar M H. Lancet,2017,389(10082):1907-1918.
Lelieveld J,Evans J S,Fnais M,Giannadaki D,Pozzer A. Nature,2015,525(7569):367-371.
Weichenthal S,Pinault L,Christidis T,Burnett R T,Brook J R,Chu Y,Crouse D L,Erickson A C,Hystad P,Li C,Martin R V,Meng J,Pappin A J,Tjepkema M,Van Donkelaar A,Weagle C L,Brauer M. Sci. Adv.,2022,8(39):eabo3381.
Jin L,Luo X S,Fu P Q,Li X D. Natl. Sci. Rev.,2017,4(4):593-610.
Pui D Y H,Chen S C,Zuo Z L. Particuology,2014,13:1-26.
Zuo P J,Huang Y M,Bi J Z,Wang W C,Li W,Lu D W,Zhang Q H,Liu Q,Jiang G B. TrAC,Trends Anal. Chem.,2023,158:116866.
Ammann A A. J. Mass Spectrom.,2007,42(4):419-427.
Meermann B,Nischwitz V. J. Anal. At. Spectrom.,2018,33(9):1432-1468.
Pröfrock D,Prange A. Appl. Spectrosc.,2012,66(8):843-868.
Ogrizek M,Kroflič A,Šala M. Trends Environ. Anal. Chem.,2022,33:e00155.
Kishi Y. Hewlett-Packard J.,1997,48(4):72-79.
Tanner S D,Baranov V I,Bandura D R. Spectrochim. Acta B,2002,57(9):1361-1452.
Balcaen L,Bolea-Fernandez E,Resano M,Vanhaecke F. Anal. Chim. Acta,2015,894:7-19.
Menendez-Miranda M,Fernández-Arguelles M T,Costa-Fernández J M,Encinar J R,Sanz-Medel A J A C A. Anal. Chim. Acta,2014,839:8-13.
He A E,Xie J J,Yuan C G. Prog. Chem.(何安恩,解姣姣,苑春刚. 化学进展),2021,33(9):1627-1647.
Laborda F,Bolea E,Jiménez-Lamana J J A C. Anal. Chem.,2014,865:2270-2278.
Ji X M,Qin R L,Shi C Z,Yang L,Yao L L,Deng S X,Qu G B,Yin Y G,Hu L G,Shi J B,Jiang G B. Environ. Int.,2022,170:107607.
Suzuki Y,Matsunaga K,Yamashita Y. Environ. Pollut.,2021,270:116054.
Suzuki Y,Sato H,Hiyoshi K,Furuta N. Spectrochim. Acta B,2012,76:133-139.
Ohata M,Nishiguchi K. Anal. Sci.,2018,34(6):657-666.
Huo J J,Han Y B. Northwest. Geol.(霍金晶,韩延兵. 西北地质),2021,54(4):280-289.
Compendium Method IO-3.5. Determination of Metals in Ambient Particulate Matter Using Indctively Coupled Plasma/Mass Spectrometry(ICP/MS) . US EPA.
BS EN 14902:2005. Ambient Air Quality-Standard Method for the Measurement of Pb,Cd,As and Ni in the PM10 Fraction of Suspended Particulate Matter. European Committee for Standardization.
Rauch S,Hemond H F,Barbante C,Owari M,Morrison G M,Peucker-Ehrenbrink B,Wass U. Environ. Sci. Technol.,2005,39(21):8156-8162.
Liu S H,Tian H Z,Bai X X,Zhu C Y,Wu B B,Luo L N,Hao Y,Liu W,Lin S M,Zhao S,Wang K,Liu K Y,Gao J J,Zhang Q,Zhang K,Kan H D,Liu Y,Hao J M. Environ. Sci. Technol.,2021,55(19):12818-12830.
Liu J W,Chen Y J,Cao H B,Zhang A C. Environ. Int.,2019,131:105041.
Nomizu T,Hayashi H,Hoshino N,Tanaka T,Kawaguchi H,Kitagawa K,Kaneco S. J. Anal. At. Spectrom.,2002,17(6):592-595.
Nishiguchi K,Utani K,Fujimori E. J. Anal. At. Spectrom.,2008,23(8):1125-1129.
Chow J C. J. Air Waste Manage. Assoc.,1995,45(5):320-382.
Fang T,Zeng L H,Gao D,Verma V,Stefaniak A B,Weber R J. Environ. Sci. Technol.,2017,51(12):6802-6811.
Taiwo A M,Beddows D C S,Shi Z B,Harrison R M. Sci. Total Environ.,2014,475:29-38.
Pan Y P,Tian S L,Li X R,Sun Y,Li Y,Wentworth G R,Wang Y S. Sci. Total Environ.,2015,537:9-22.
Lee S Y,Bi X Y,Reed R B,Ranville J F,Herckes P,Westerhoff P. Environ. Sci. Technol.,2014,48(17):10291-10300.
Pace H E,Rogers N J,Jarolimek C,Coleman V A,Higgins C P,Ranville J F. Anal. Chem.,2011,83(24):9361-9369.
Goodman A J,Gundlach-Graham A,Bevers S G,Ranville J F. Environ. Sci.:Nano,2022,9(8):2638-2652.
Praetorius A,Gundlach-Graham A,Goldberg E,Fabienke W,Navratilova J,Gondikas A,Kaegi R,Günther D,Hofmann T,Von Der Kammer F. Environ. Sci.:Nano,2017,4(2):307-314.
Holbrook T R,Gallot-Duval D,Reemtsma T,Wagner S. J. Anal. At. Spectrom.,2021,36(12):2684-2694.
Cao R S,Fan M Y,Huang X F,Hu J W,Qin F X,Zhang Z D. Environ. Pollut. Control(曹人升,范明毅,黄先飞,胡继伟,秦樊鑫,张泽东. 环境污染与防治),2017,39(2):212-216.
Beard B L,Johnson C M. Rev. Mineral. Geochem.,2004,55(1):319-357.
Malinovsky D,Stenberg A,Rodushkin I,Andren H,Ingri J,Öhlander B,Baxter D C. J. Anal. Atom. Spectrom.,2003,18(7):687-695.
Kurisu M,Takahashi Y,Iizuka T,Uematsu M. J. Geophys. Res.:Atmos.,2016,121(18):11119-11136.
Mead C,Herckes P,Majestic B J,Anbar A D. Geophys. Res. Lett.,2013,40(21):5722-5727.
Beard B L,Johnson C M,Von Damm K L,Poulson R L. Geology,2003,31(7):629-632.
Poitrasson F. Chem. Geol.,2006,235(1/2):195-200.
Kurisu M,Adachi K,Sakata K,Takahashi Y. ACS Earth Space Chem.,2019,3(4):588-598.
Majestic B J,Anbar A D,Herckes P. Sci. Total Environ.,2009,407(18):5104-5109.
Kurisu M,Sakata K,Miyamoto C,Takaku Y,Iizuka T,Takahashi Y. Chem. Lett.,2016,45(8):970-972.
Majestic B J,Anbar A D,Herckes P. Environ. Sci. Technol.,2009,43(12):4327-4333.
Zuo P J,Huang Y M,Liu P F,Zhang J W,Yang H,Liu L,Bi J Z,Lu D W,Zhang Q H,Liu Q,Jiang G B. Environ. Sci. Technol. Lett.,2022,9(4):299-305.
Tagliabue A,Bowie A R,Boyd P W,Buck K N,Johnson K S,Saito M A. Nature,2017,543(7643):51-59.
Chuang P Y,Duvall R M,Shafer M M,Schauer J J. Geophys. Res. Lett.,2005,32(7):L07813.
Srinivas B,Sarin M M,Kumar A. Biogeochemistry,2012,110(1/3):257-268.
Kirschvink J L,Kobayashikirschvink A,Woodford B J. Proc. Natl. Acad. Sci. USA,1992,89(16):7683-7687.
Compendium Method IO-3.3. Determination of Metals in Ambient Particulate Matter Using X-Ray Fluorescence(XRF) Spectroscopy. US EPA.
Hand J L,Prenni A J,Schichtel B A,Malm W C,Chow J C. Atmos. Environ.,2019,203:141-152.
Yuan X X,Zhou D Y,Li J,Xu X S,Yong L,Hu B,Liu T. Spectrosc. Spectral Anal.(袁小雪,周定友,李杰,徐先顺,雍莉,胡彬,刘滔. 光谱学与光谱分析),2020,40(8):2373-2381.
Limbeck A,Galler P,Bonta M,Bauer G,Nischkauer W,Vanhaecke F. Anal. Bioanal. Chem.,2015,407(22):6593-6617.
Rovelli S,Nischkauer W,Cavallo D M,Limbeck A. Anal. Chim. Acta,2018,1043:11-19.
Qiao L,Zhang R J,Qiao J,He X Y,Wu Z W. RSC Adv.,2021,11(12):6644-6653.
Wang Q Q,Tan J H,Ma Y L,He K B,Wei L F,Yang F M,Yu Y C,Wang J W. China Environ. Sci.(王晴晴,谭吉华,马永亮,贺克斌,韦莲芳,杨复沫,余永昌,王洁文. 中国环境科学),2012,32(8):1384-1391.
Suzuki K. Atmos. Environ.,2006,40(14):2626-2634.
Gallagher M,Mcnabola A,Kamber B,Gill L,Ghosh B,Alam M S. Int. J. Environ. Impacts,2018,1(2):127-138.
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构