1.中山大学 药学院,广东 广州 510006
2.南方医科大学附属第三医院,广东 广州 510500
3.广东省第二人民医院,广东 广州 510310
陈缵光,教授,博士生导师,研究方向:药物分析,微流控芯片,E-mail:chenzg@mail.sysu.edu.cn
童艳丽,主任药师,硕士生导师,研究方向:药物分析,微流控芯片,E-mail:tongh2008@126.com
纸质出版日期:2024-03-15,
收稿日期:2023-10-30,
修回日期:2023-12-10,
扫 描 看 全 文
程洁,蔡霜霜,王其友等.电裂解芯片及其在细菌核酸分析中的应用[J].分析测试学报,2024,43(03):373-381.
CHENG Jie,CAI Shuang-shuang,WANG Qi-you,et al.Electrolysis Microfluidic Chip and Application to Bacterial Nucleic Acid Analysis[J].Journal of Instrumental Analysis,2024,43(03):373-381.
程洁,蔡霜霜,王其友等.电裂解芯片及其在细菌核酸分析中的应用[J].分析测试学报,2024,43(03):373-381. DOI: 10.12452/j.fxcsxb.23103002.
CHENG Jie,CAI Shuang-shuang,WANG Qi-you,et al.Electrolysis Microfluidic Chip and Application to Bacterial Nucleic Acid Analysis[J].Journal of Instrumental Analysis,2024,43(03):373-381. DOI: 10.12452/j.fxcsxb.23103002.
近年来,由于各种细菌引起的疾病不断爆发,细菌核酸检测已成为常用的实验室诊断方法。细菌核酸提取是细菌分类和鉴定的关键步骤,也是医学诊断、药物筛选的重要技术之一。目前的细菌核酸提取以化学裂解方法为主,其存在明显的缺点,如样品量大、化学试剂污染等。因此,研究快速、简单、无化学污染的检测装置具有重要意义。该研究设计了一种微流控芯片在直流电场下裂解各种细菌并提取核酸。研究了电场强度、电极间距、裂解时间、氧化铟锡电极方阻及电极宽度对核酸提取的影响。结果表明,在3.0 kV/mm的电场强度下,该芯片可在3 s内裂解大肠杆菌、金黄色葡萄球菌、表皮葡萄球菌、枯草芽孢杆菌、肺炎克雷伯氏菌、鼠伤寒沙门氏菌和铜绿假单胞菌等多种细菌,并释放出核酸。提取的核酸无需纯化,可直接用于PCR检测。该芯片与实时荧光定量PCR联用检测细菌DNA的线性范围为10
-18
~10
-10
mol/L,检出限低至4.2×10
-18
mol/L。不同类型的细菌需根据其性质适当调整最佳裂解条件。该研究为病原体分析和细菌感染的医学诊断提供了一种简单、快速、高效且无化学试剂污染的核酸提取方法。
In recent years,bacterial nucleic acid detection has become a common laboratory diagnostic method owing to the continuous outbreak of diseases caused by various bacteria. Bacterial nucleic acid extraction is a key step in the classification and identification of bacteria,and also one of the important techniques for medical diagnosis and drug screening. Current bacterial nucleic acid extraction is dominated by chemical lysis methods,which have obvious drawbacks,such as large sample volume and chemical reagent contamination. Therefore,it is significantly important to develop a rapid,simple and chemically contamination-free device. In this study,we designed a microfluidic chip combining indium tin oxide(ITO) electrodes and polydimethylsiloxane(PDMS) to lysed various bacteria and extracted nucleic acids under direct current(DC) electric field. When bacteria exposed to the DC electric field,transmembrane potentials formed inside and outside of the cell membrane,leading to irreversible changes in the permeability and subsequently bacterial breakdown. Based on this principle,the effects of electric field intensity,electrode distance,lysis time,square resistance of ITO electrode and electrode width on nucleic acid extraction were investigated. Real-time fluorescence quantitative PCR,colony culture,and laser confocal microscopy were employed to jointly evaluate the performance of the chip for bacterial lysis and nucleic acid extraction. The results demonstrated that the chip could lysed a variety of bacteria(including
Escherichia coli
,
Staphylococcus aureus
,
Staphylococcus
epidermidis
,
Bacillus subtilis
,
Klebsiella pneumoniae
,
Salmonella typhimurium
,and
Pseudomonas aeruginosa
) under an electric field strength of 3.0 kV/mm within 3 s and released nucleic acids. The extracted nucleic acids can be directly applied to PCR assays without any purification. The results indicate that an appropriate electric field intensity,electrode distance,and lysis time are more conducive to nucleic acid extraction,and the optimal lysis conditions required for nucleic acid extraction differ slightly for different types of bacteria and need to be adjusted according to the properties of the particular bacteria. In contrast to other methods of bacterial lysis by electrolysis,we validated the performance of the device for bacterial lysis and nucleic acid extraction by quantitative PCR experiments,which can be better integrated with subsequent detection processes. The chip was used in conjunction with real-time fluorescent quantitative PCR to detect bacterial DNA in a linear range of 10
-18
-10
-10
mol/L,with a detection limit as low as 4.2×0
-18
mol/L. The chip designed in this work is facile to fabricate,low-cost,easily manipulated,and appropriate for point-of-care testing,especially in resource-limited settings. This study provides a simple,fast,chemical-free,and efficient nucleic acid extraction method for pathogen analysis and medical diagnosis of bacterial infections.
微流控芯片电裂解核酸提取直流电场多种细菌
microfluidic chipelectric lysisnucleic acid extractionDC electric fieldmultiple bacteria
Vandeventer P E,Weigel K M,Salazar J,Erwin B,Niemz A. J. Clin. Microbiol.,2011,49(7):2533-2539.
Altendorf K,Booth I R,Gralla J,Greie J C,Rosenthal A Z,Wood J M. EcoSal Plus,2009,3(2):1-42.
de Bruin OM,Chiefari A,Wroblewski D,Egan C,Kelly-Cirino C D. Microb. Pathog.,2019,126:292-297.
Zevnik J,Dular M. Ultrason. Sonochem.,2022,87(106053):1-20.
Taskova R M,Zorn H,Krings U,Bouws H,Berger R G. Zeitschrift fur Naturforschung C,2006,61(5/6):347-350.
Shrestha P,Holland T M,Bundy B C. Biotechniques,2012,53(3):163-174.
Wang X F,Lee B T,Son A. Appl. Microbiol. Biotechnol.,2014,98(20):8719-8728.
Ren X D,Yu D W,Yu L,Gao G,Han S P,Feng Y J. J. Biotechnol.,2007,129(4):668-673.
Ebner J,Sedlmayr V,Klausser R. Methods Mol. Biol.,2023,2617:141-154.
Kim M,Wu L D,Kim B,Hung D T,Han J. Anal. Chem.,2018,90(1):872-880.
Wang Z Y,Huang P H,Chen C Y,Bachman H,Zhao S G,Yang S J,Huang T J. Lab Chip,2019,19(24):4021-4032.
Lai H H,Quinto-Su P A,Sims C E,Bachman M,Li G P,Venugopalan V,Allbritton N L. J. R. Soc. Interface,2008,5(Suppl 2):S113-S121.
Lee H J,Kim J H,Lim H K,Cho E C,Huh N,Ko C,Park J C,Choi J W,Lee S S. Lab Chip,2010,10(5):626-633.
Engebrecht J,Heilig J S,Brent R. Curr. Protoc. Immunol.,2001,10(3):1-10.
Green M R,Sambrook J. Cold Spring Harb Protoc.,2016,2016(10):911-916.
Danaeifar M. Biotechnol. Bioeng.,2022,119(11):3007-3021.
Harrison S T. Biotechnol. Adv.,1991,9(2):217-240.
Kulikov S N,Shumkova Y A. Bull. Exp. Biol. Med.,2014,157(2):243-245.
Grigorov E,Kirov B,Marinov M B,Galabov V. Micromachines(Basel),2021,12(5):498-524.
Ameri S K,Singh P K,Dokmeci M R,Khademhosseini A,Xu Q B,Sonkusale S R. Biosens. Bioelectron.,2014,54:462-467.
Escobedo C,Bürgel S C,Kemmerling S,Sauter N,Braun T,Hierlemann A. Lab Chip,2015,15(14):2990-2997.
Wei X Y,Li J H,Wang L,Yang F. Biomed. Microdevices,2019,21(22):1-9.
Sui G D,Wang J Y,Lee C C,Lu W X,Lee S P,Leyton J V,Wu A M,Tseng H R. Anal. Chem.,2006,78(15):5543-5551.
Chen Z G,Li Q W,Li O L,Zhou X,Lan Y,Wei Y F,Mo J Y. Talanta,2007,71(5):1944-1950.
Jeon H,Kim S,Lim G. Microelectron. Eng.,2018,198:55-72.
Grahl T,Märkl H. Appl. Microbiol. Biotechnol.,1996,45(1/2):148-157.
Lee D H,Bae J E,Lee J H,Shin J S,Kim I S. J. Microbiol. Biotechnol.,2010,20(10):1463-1470.
Fykse E M,Olsen J S,Skogan G. J. Microbiol. Methods,2003,55(1):1-10.
Silhavy T J,Kahne D,Walker S. Cold Spring Harb. Perspect. Biol.,2010,2(5):1-16.
Zhao J Q,Li N,Zhou X Y,Yu Z H,Lan M,Chen S Y,Miao J J,Li Y L,Li G Y,Yang F. Micromachines(Basel),2023,14(1):144-150.
Jen C P,Amstislavskaya T G,Liu Y H,Hsiao J H,Chen Y H. Sensors(Basel),2012,12(6):6967-6977.
Morshed B,Shams M,Mussivand T. Micromachines,2013,4(2):243-256.
Won E J,Thai D A,Duong D D,Lee N Y,Song Y J. J. Biotechnol.,2021,335:19-26.
0
浏览量
32
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构