北京化工大学 化学学院,北京 100029
杜振霞,博士,教授,研究方向:分析化学,E-mail:duzx@mail.buct.edu.cn
纸质出版日期:2024-04-15,
收稿日期:2023-10-07,
修回日期:2024-01-05,
扫 描 看 全 文
李思,陈攀金,田丁炜等.车用气雾剂中VOCs检测方法的研究[J].分析测试学报,2024,43(04):630-636.
LI Si,CHEN Pan-jin,TIAN Ding-wei,et al.A Study on the Detection Method of VOCs in Automotive Aerosols[J].Journal of Instrumental Analysis,2024,43(04):630-636.
李思,陈攀金,田丁炜等.车用气雾剂中VOCs检测方法的研究[J].分析测试学报,2024,43(04):630-636. DOI: 10.12452/j.fxcsxb.23100701.
LI Si,CHEN Pan-jin,TIAN Ding-wei,et al.A Study on the Detection Method of VOCs in Automotive Aerosols[J].Journal of Instrumental Analysis,2024,43(04):630-636. DOI: 10.12452/j.fxcsxb.23100701.
为准确测量气雾剂产品中挥发性有机化合物(VOCs)的成分及含量,设计了特定装置将气雾剂中推进剂和非推进剂进行分离,利用采集袋收集气雾剂中的推进剂,通过液液萃取法对非推进剂中的VOCs进行提取。以所建立的气相色谱-质谱/氢火焰离子化检测器(GC-MS/FID)联用方法对样品进行分析,其中推进剂气体组分含量用归一化法进行测定,非推进剂的VOCs依据检出种类,选择8种VOCs建立标准曲线。各物质在对应质量浓度范围呈良好的线性关系,相关系数(
r
2
)均大于0.99;检出限和定量下限分别为0.25~0.50 mg/L和0.50~1.00 mg/L;回收率为90.5%~105%,相对标准偏差(RSD)为1.8%~9.3%。应用建立的方法分析6种不同功能的气雾剂产品,并计算其臭氧生成潜势。结果表明,推进剂部分主要检出丙烷、丁烷、二甲醚,非推进剂部分检出苯系物、烷烃、环烷烃、单萜类、羧酸衍生物、醚类,其中苯系物和单萜类含量较高。该方法可为企业改进产品配方提供参考,也可为监管部门提供技术支持。
In order to accurately measure the composition and content of volatile organic compounds(VOCs) in aerosol products,a specific device was designed in this paper to separate the aerosol propellant from the non-propellant.The propellant from the aerosol was collected using collection bags,and the non-propellant part of the VOC was extracted using liquid-liquid extraction method.The samples were analyzed by using the established analytical method of gas chromatography-mass spectrometry/flame ionization detector(GC-MS/FID). The propellant gas fraction content was determined by the normalization method. The non-propellant VOCs were selected based on the detected VOCs species,and eight VOCs substances were selected to establish standard curves.Good linearity was obtained in the mass concentration ranges,with the correlation coefficients(
r
2
) all greater than 0.99. The detection limits and the quantitation limits of the analytes were in the ranges of 0.25-0.50 mg/L and 0.50-1.00 mg/L,respectively. The recoveries of each analyte were obtained in the ranges of 90.5%-105%,with relative standard deviations(RSDs) ranging from 1.8% to 9.3%. The established method was applied to analyze six aerosol products with different functions and calculate their ozone formation potentials. The results showed that propane,butane and dimethyl ether were mainly detected in the propellant fraction,and benzene,alkanes,cycloalkanes,monoterpenes,carboxylic acid derivatives,and ethers were detected in the non-propellant fraction,with benzene and monoterpenes being higher. Therefore,the analytical method constructed in this paper can provide certain reference for enterprises to improve their product formulations,and also provide technical support for regulatory authorities.
液液萃取气相色谱-质谱/氢火焰离子化检测器联用气雾剂VOCs
liquid-liquid extractiongas chromatography-mass spectrometry/flame ionization detector couplingaerosolVOCs
Liu Y,Yu Y,Song K,Wan Z C,Lu S H,Yu X N,Zeng L M,Guo S. J. Nanjing Univ. Inf. Sci. Technol. 刘毅,俞颖,宋锴,万子超,陆思华,于雪娜,曾立民,郭松. 南京信息工程大学学报(自然科学版)),2020,12(6):665-675.
Qiao W Z,Wu Y C,Wang P,Wang J,Zhou L M,Li S T,Zhang H H. Cont. Shelf Res.,2023,261(105023):1-11.
Hu Y N,Shi B W,Yuan X,Zheng C Z,Sha Q E,Yu Y F,Huang Z J,Zheng J Y. J. Environ. Sci.,2023,123:430-445.
Cao J J,Li J J. J. Earth Environ. (曹军骥,李建军. 地球环境学报),2016,7(5):431-441.
Fu Z H,Xie H B,Elm J,Guo X R,Fu Z Q,Chen J W. Environ. Sci. Technol.,2020,54(12):7136-7145.
Wang H L,Hao R,Xie X Q,Li G A,Wang X X,Zhao H,Zhang Z S,Fang L,Hao Z P. Sci. Total Environ.,2023,860(160115):1-8.
Chen P,Zhang Y,Zhang L,Xiong K,Xing M,Li S S. Environ. Sci. Technol.(陈鹏,张月,张墚,熊凯,邢敏,李珊珊. 环境科学),2021,42:3604-3614.
State Council of the PRC. Three-year Action Plan for Wining the Blue Sky Defense Battle. [2018-06-27]. https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htmhttps://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm.
Amber M Y,Alastair C L. Sci. Anthropocene,2021,9 (1):2-15.
Dinh T V,Kim S Y,Son Y S,Choi I N,Park S R,Sunwoo Y,Kim J C. Environ. Sci. Pollut. Res. Int.,2015,22(12):9345-9355.
Lin K H,Tsai J H,Cheng C C. Aerosol Air Qual. Res.,2022,22(9):1-12.
Schymanski E L,Jeon J,Gulde R,Fenner K,Ruff M. Environ. Sci. Technol.,2014,48:2097-2098.
Djoumbou F Y,Eisner R,Knox C,Chepelev L,Hastings J,Owen G,Fahy E,Steinbeck C,Subramanian S,Bolton E,Greiner R,Wishart D S. J. Cheminf.,2016,8(61):2-20.
Carter W P L. Atmos. Environ.,2010,44(40):5324-5335.
Fan G L,Song C L,Zhou W Y,Yan Y,Liu C J,Jiang D F,Sui J,Liu C Y. Chin. J. Anal. Chem.(范国梁,宋崇林,周维义,阎颖,刘昌俊,姜东峰,隋静,刘春宇. 分析化学),2002,30(8):906-910.
Guo Z X. Occupational Hazard Risk Assessment Study of Low Concentration Benzene Exposure in the Auto Repair Industry. Beijing:Capital University of Economics and Business(郭子娴. 汽修行业低浓度苯系物暴露的职业危害风险评估研究. 北京:首都经济贸易大学),2020.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构