1.华北科技学院 应急技术与管理学院,河北 三河 065201
2.中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083
3.中国科学院物理研究所,北京 100190
李德建,博士,教授,研究方向:岩爆、岩石力学,E-mail:lidejianbj@gmail.com
李英骏,博士,教授,研究方向:激光等离子体物理、光测力学,E-mail:lyj@aphy.iphy.ac.cn
纸质出版日期:2024-03-15,
收稿日期:2023-09-18,
修回日期:2023-12-14,
扫 描 看 全 文
陈露,常龙飞,沈沐傲等.不同含水量砂岩的中红外光谱特征与预测模型研究[J].分析测试学报,2024,43(03):489-495.
CHEN Lu,CHANG Long-fei,SHEN Mu-ao,et al.Research on Mid-infrared Spectral Characteristics and Prediction Models of Sandstone in Different Water Content[J].Journal of Instrumental Analysis,2024,43(03):489-495.
陈露,常龙飞,沈沐傲等.不同含水量砂岩的中红外光谱特征与预测模型研究[J].分析测试学报,2024,43(03):489-495. DOI: 10.12452/j.fxcsxb.23091801.
CHEN Lu,CHANG Long-fei,SHEN Mu-ao,et al.Research on Mid-infrared Spectral Characteristics and Prediction Models of Sandstone in Different Water Content[J].Journal of Instrumental Analysis,2024,43(03):489-495. DOI: 10.12452/j.fxcsxb.23091801.
水对岩石具有软化、溶蚀等作用,准确预测岩石的含水量对岩土工程的地下深部开采至关重要。该文将中红外光谱技术应用于砂岩的含水量分析,研究了不同砂岩样品的中红外光谱特征与其含水量之间的关系。通过多种预处理方法提取有效特征向量,构建了针对砂岩含水量的中红外光谱预测模型。结果表明,多元散射校正+偏最小二乘法、归一化特征向量提取+随机森林及一阶微分+支持向量机 3种模型在测试集上预测的含水量与实测值之间的相关系数(
R
2
)分别为0.985、0.995和0.951,均方根误差分别为0.074、0.022和0.137,即特征向量提取+随机森林的预测模型效果最佳。该方法通过中红外光谱技术实现了砂岩含水量的无损、快速分析,为地质工程中砂岩的水分预测提供了参考。
The water can soften and dissolve rocks,it is very important to predict the water content of rocks accurately for deep underground mining of geotechnical engineering. In this paper,the mid-infrared spectroscopy was applied to analyze the water content of sandstone. The relationship between the mid-infrared spectral characteristics and water content of sandstone samples was studied. The effective feature vectors were extracted by various pretreatment methods,and an mid-infrared spectral prediction model for water content of sandstone was constructed. The results showed that the correlation coefficients
R
2
between the predicted and measured values on the test set for multiple scattering correction+partial least squares,feature vector extraction+random forest and first order differential+support vector machine were 0.985,0.995 and 0.951,respectively. The root-mean-square errors were 0.074,0.022 and 0.137. All of them can predict the water content of sandstone well,and the prediction model combining feature vector and random forest had the best effect. This method realizes non-destructive and rapid water content analysis of sandstone by mid-infrared spectroscopy,providing a reference for water prediction of sandstone in geological engineering.
中红外光谱砂岩含水量预测
mid-infrared spectrumsandstonewater contentforecast
Li T B,Chen Z Q,Chen G Q,Ma C C,Tang O L,Wang M J. Rock Soil Mech.(李天斌,陈子权,陈国庆,马春驰,唐欧玲,王敏杰. 岩土力学),2015,36(2):229-236.
Hasan S,Montzka C,Rüdiger C. ISPRS J. Photogramm. Remote Sens.,2014,91:59-71.
Guo B,Zhang B,Su Y,Zhang D M,Wang Y,Bian Y,Suo L,Guo X N,Bai H R. Sci. Rep.,2021,11(1):19909.
Yang X C,Chen L F,Wang H W,Zang H C,Guo X P,Nie L. J. Instrum. Anal.(杨向春,陈丽芳,王浩伟,臧恒昌,郭学平,聂磊. 分析测试学报),2023,42(8):943-951.
Cao M C. Laser J.(曹妙聪. 激光杂志),2020,41(12):18-21.
Savin I Y,Vindeker G V. Eurasian Soil Sci.,2021,54(7):1019-1027.
Huang J W,Liu S J,Liu W F,Zhang C J,Li S P,Yu M,Wu L X. Remote Sens.,2021,13(6):1191.
Zhang F,Hu Z L,Hou X L,Zhang X L,Fu C G,Li Y J,He M C. Spectrosc. Spectral Anal.(张芳,户佐乐,侯欣莉,张秀莲,付成功,李英骏,何满潮. 光谱学与光谱分析),2019,39(11):3395-3420.
Qiao X X,Wang C,Feng M C,Yang W D,Ding G W,Sun H,Liang Z Y,Shi C C. Spectrosc. Lett.,2017,50(3):156-163.
Chu X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications. Beijing:Chemical Industry Press(褚小立. 化学计量学与分子光谱分析技术. 北京:化学工业出版社),2011:264.
Mishra P,Nordon A,Roger J M. J. Pharm. Biomed. Anal.,2020,192:113684.
Xu L J,Meng X Y,Wei R,Zhang K. Spectrosc. Spectral Anal.(徐良骥,孟雪莹,韦任,张坤. 光谱学与光谱分析),2022,42(7):2135-2142.
Costa D,Mesa N,Freire M S,Ramos R P,Mederos B J T. Postharvest Biol. Technol.,2019,150:166-178.
Sun B L,Liu J L,Chai Y B. Spectrosc. Spectral Anal.(孙柏玲,刘君良,柴宇博. 光谱学与光谱分析),2011,31(2):366-370.
Chen F X,Yang T W,Li J Q,Liu H G,Fan M P,Wang Y Z. Spectrosc. Spectral Anal.(陈凤霞,杨天伟,李杰庆,刘鸿高,范茂攀,王元忠. 光谱学与光谱分析),2022,42(2):549-554.
Bian X H,Wang K Y,Tan E X,Diwu P Y,Zhang F,Guo Y G. Chemom. Intell. Lab. Syst.,2020,197:103916.
Wang C Y,Shi X F,Li W D,Ren W W,Zhang J L. J. Instrum. Anal.(王春艳,史晓凤,李文东,任伟伟,张金亮. 分析测试学报),2014,33(3):289-294.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构