江南大学 生物工程学院 糖化学与生物技术教育部重点实验室,江苏 无锡 214122
周楠迪,博士,教授,研究方向:分子识别与生物分析,E-mail:zhounandi@jiangnan.edu.cn
纸质出版日期:2024-02-15,
收稿日期:2023-09-06,
修回日期:2023-10-28,
扫 描 看 全 文
王晓丽,刘浩,杜龙啸等.新型一氧化氮比率型纳米探针的构建及性能研究[J].分析测试学报,2024,43(02):247-253.
WANG Xiao-li,LIU Hao,DU Long-xiao,et al.Construction and Performance Study of a Novel Ratimetric Nanoprobe for Nitric Oxide Detection[J].Journal of Instrumental Analysis,2024,43(02):247-253.
王晓丽,刘浩,杜龙啸等.新型一氧化氮比率型纳米探针的构建及性能研究[J].分析测试学报,2024,43(02):247-253. DOI: 10.12452/j.fxcsxb.23090601.
WANG Xiao-li,LIU Hao,DU Long-xiao,et al.Construction and Performance Study of a Novel Ratimetric Nanoprobe for Nitric Oxide Detection[J].Journal of Instrumental Analysis,2024,43(02):247-253. DOI: 10.12452/j.fxcsxb.23090601.
该文首先通过两步化学反应合成NO识别分子3,4-二氨基苯硫醇(DABT),然后制备具有强表面拉曼增强散射(SERS)效应的银包金纳米星(AuNSs@Ag)材料,并通过Ag—S键对其进行DABT修饰,制备了比率型SERS纳米探针AuNSs@Ag-DABT。利用透射电子显微镜、水合粒径、Zeta电位以及紫外吸收光谱对纳米探针进行表征,并开展了NO的定量检测。结果表明:构建的AuNSs@Ag-DABT纳米探针表面有尖锐突出的星状结构,尺寸约为80 nm。NO存在时,DABT与NO发生反应并在541 cm
-1
附近出现一个新的拉曼峰(三唑环),而在1 078 cm
-1
处的拉曼峰(C—S离面弯曲峰)强度保持不变,因此可以根据
I
541
/
I
1078
的比值定量检测NO。在最优条件下,
I
541
/
I
1078
的比值与NO浓度在10~60 nmol/L 范围内表现出良好的线性响应,检出限为3.89 nmol/L。选择性实验表明该比率型SERS纳米探针对NO响应具有良好的专一性和抗干扰性。
In this study,a NO recognition molecule,3,4-diaminobenzenethiol(DABT),through a two-step chemical reaction was firstly synthesized. Subsequently,silver-coated gold nanostars(AuNSs@Ag) with strong surface-enhanced Raman scattering(SERS) effect were prepared. Then,AuNSs@Ag was further modified with DABT via Ag—S bonding,resulting in a ratiometric SERS nanoprobe,AuNSs@Ag-DABT. The prepared nanoprobe was characterized using such as transmission electron microscopy (TEM), hydrodynamic particle size analysis (DLS), Zeta potential measurement, and ultraviolet absorption spectroscopy. Subsequently,quantitative detection of NO was carried out. The experimental results showed that the constructed nanoprobe exhibited a star-shaped structure with sharp protrusions on the surface,with a size of approximately 80 nm. In the presence of NO,DABT reacted with NO,leading to the appearance of a new Raman peak near 541 cm
-1
(attributed to the triazole ring),while the Raman peak at 1 078 cm
-1
(attributed to C—S out-of-plane bending) remained unchanged. Therefore,NO could be quantitatively detected based on the ratio of
I
541
/
I
1078
. Under the optimal conditions,the ratio of
I
541
/
I
1078
showed a good linear response to NO concentrations in the range of 10-60 nmol/L,with a detection limit of 3.89 nmol/L. Furthermore,selective experiments demonstrated that the ratiometric SERS nanoprobe exhibited specificity and interference resistance in response to NO.
一氧化氮表面拉曼增强散射纳米探针定量检测
nitric oxidesurface-enhanced Raman scatteringnanoprobequantitative detection
Zhu H Y,Hong F F,Yang S L. Int. J. Mol. Sci.,2021,22(9):4540.
Lundberg J O,Weitzberg E. Cell,2022,185(16):2853-2878.
Picon-Pages P,Garcia-Buendia J,Munoz F J. Biochim. Biophys. Acta Mol. Basis Dis.,2019,1865(8):1949-1967.
Vidanapathirana A K,Psaltis P J,Bursill C A,Abell A D,Nicholls S J. Med. Res. Rev.,2021,41(1):435-463.
Zhao M Y,Liu X,Hou Y Z,Yang T T,Xu J Q,Su R. Anal. Chem.,2022,94(12):5122-5131.
Patra D C,Chakraborty P,Deka N,Debnath K,Mondal S P. Chem. Phys. Lett.,2022,802:139795.
Nasuno R,Shino S,Yoshikawa Y,Yoshioka N,Sato Y,Kamiya K,Takagi H. Anal. Biochem.,2020,598:113707.
Li R F,Qi H,Ma Y,Deng Y P,Liu S N,Jie Y S,Jing J Z,He J L,Zhang X,Wheatley L,Huang C X,Sheng X,Zhang M L,Yin L. Nat. Commun.,2020,11(1):3207.
Gan N. J. Instrum. Anal.(干宁. 分析测试学报),2005,24(6):10-15.
Zhang M T,Wu L,Du J Y. J. Instrum. Anal.(张梦田,吴丽,杜江燕. 分析测试学报),2022,41(8):1163-1169.
Fan M K,Andrade G F S,Brolo A G. Anal. Chim. Acta,2020,1097:1-29.
Zhao B B,Liu H,Wang H,Zhang Y T,Wang X L,Zhou N D. Biosens. Bioelectron.,2022,218:114789.
Chen H Y,Kouadio F E,Jiang L,Chang S,Li J B,Zhan D S,Gu H X,Li D W. ACS Sens.,2019,4(12):3234-3239.
Tong L N,Zhu T,Liu Z F. Chem. Soc. Rev.,2011,40(3):1296-1304.
Xu Q,Liu W,Li L,Zhou F,Zhou J,Tian Y. Chem. Commun. (Camb),2017,53(11):1880-1883.
Cui J,Hu K,Sun J J,Qu L L,Li D W. Biosens. Bioelectron.,2016,85:324-330.
Peng Y M,Qin L X,Kang S Z,Li G D,Li X P. Talanta,2019,191:457-460.
Zhang Z J,Han X M,Wang Z M,Yang Z,Zhang W M,Li J,Yang H H,Ling X Y,Xing B G. Chem. Commun.,2018,54(51):7022-7025.
Yuan X X,Mi X,Liu C,Zhang Z D,Wei X F,Wang D K,Tan X Y,Xiang R,Xie W,Zhang Y T. Biosens. Bioelectron.,2023,235:115365.
Xu Y,He P H,Ahmad W,Hassan M M,Ali S,Li H H,Chen Q. Biosens. Bioelectron.,2022,209:114240.
Zhao J,Wu C,Zhai L P,Shi X F,Li X,Weng G J,Zhu J,Li J J,Zhao J W. J. Mater. Chem. C,2019,7(27):8432-8441.
Dutta A,Maiti D,Katarkar A,Sasmal M,Khatun R,Moni D,Habibullah M,Ali M. ACS Appl. Bio Mater.,2023,6(8):3266-3277.
Chen L Y,Wu D,Yoon J. Sens. Actuators B,2018,259:347-353.
Wang Y,Zhou Y T,Chen Y J,Yin Z H,Hao J,Li H M,Liu K P. Microchim. Acta,2022,189(4):162.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构