1.合肥大学 能源材料与化工学院,安徽 合肥 230601
2.皖西学院 材料与化工学院,安徽 六安 237012
陈丽娟,博士,副教授,研究方向:聚合物点的合成及应用,E-mail:lijuanch88@wxc.edu.cn
纸质出版日期:2024-02-15,
收稿日期:2023-08-30,
修回日期:2023-10-14,
扫 描 看 全 文
陈畅畅,邓崇海,刘仁勇等.荧光聚多巴胺纳米材料的构筑及对金属离子检测的应用进展[J].分析测试学报,2024,43(02):351-360.
CHEN Chang-chang,DENG Chong-hai,LIU Ren-yong,et al.Construction of Fluorescent Polydopamine Nanomaterials and Its Application for Metal Ions Detection[J].Journal of Instrumental Analysis,2024,43(02):351-360.
陈畅畅,邓崇海,刘仁勇等.荧光聚多巴胺纳米材料的构筑及对金属离子检测的应用进展[J].分析测试学报,2024,43(02):351-360. DOI: 10.12452/j.fxcsxb.23083002.
CHEN Chang-chang,DENG Chong-hai,LIU Ren-yong,et al.Construction of Fluorescent Polydopamine Nanomaterials and Its Application for Metal Ions Detection[J].Journal of Instrumental Analysis,2024,43(02):351-360. DOI: 10.12452/j.fxcsxb.23083002.
荧光聚多巴胺(FPDA)纳米材料因制备方法简单,发光性能、水分散性和生物相容性良好等优点,在化学传感、生物检测及细胞成像等领域有重要的应用价值。然而,通过传统的多巴胺(DA)氧化自聚合路径获得的聚多巴胺(PDA)往往不发光/弱荧光。该文首先从结构上剖析PDA不发光/弱荧光的根源,即PDA分子内/间的堆积程度过高,聚集诱导荧光猝灭;然后综述了近些年通过抑制多巴胺聚合度或减弱PDA中平面芳香环间的π-π堆积构筑FPDA纳米材料的方法,主要包括:化学氧化、共掺杂、化学降解以及碳化等,并深入阐述了FPDA纳米材料的形态、发光机制及其在金属离子检测领域的应用进展。
Due to the facile synthesis method,excellent luminescence properties,great water dispersion and biocompatibility of fluorescent polydopamine(FPDA) nanomaterials,it has attracted much attention and potential applications in the fields of chemical sensing,biological detection and cell imaging. However,the intrinsic PDA nanoparticles has no/weak photoluminescence properties by using dopamine(DA) oxidative self-polymerization under the traditional conditions. In this paper,the origin of the non-luminescence/weak fluorescence of the intrinsic PDA was analyzed firstly,and the aggregation induced fluorescence quenching was considered as the main reason that is due to the excessive degree of intra/inter-molecular stacking of PDA. And then,it has summarized the construction methods of FPDA in recent years,including:chemical oxidation,conjugation,chemical degradation,carbonization and etc,which were achievement by inhibiting the polymerization degree of dopamine or reducing the π-π stacking between the aromatic rings in PDA. Meanwhile,the morphology,luminescence mechanism and its applications in metal ions detection of FPDA were discussed in detail.
荧光聚多巴胺化学传感金属离子
fluorescent polydopaminechemical sensingmetal ions
Lee H,Dellatore S M,Miller W M,Messersmith P B. Science,2007,318(5849):426-430.
Chen L J,Zeng R J,Wang Y M. Polym. Bull. 陈丽娟,曾容菊,王延梅. 高分子通报),2012,(1):15-22.
Chen L J,Wang J,Yan Y H,Tang G. Polym. Bull. 陈丽娟,汪君,闫叶寒,唐刚. 高分子通报),2018,(7):42-49.
Chinchulkar S A,Patra P,Dehariya D,Yu A,Rengan A K. Polym. Adv. Technol.,2022,33(12):3935-3956.
Lee H A,Park E,Lee H. Adv. Mater.,2020,32(35):1907505-1907525.
Rocha J F,Hasimoto L H,Santhiago M. Anal. Bioanal. Chem.,2023,415(18):3799-3816.
Oshima J,Yoshihara T,Tobita S. Chem. Phys. Lett.,2006,423(4/6):306-311.
Su H,Zhao F. Appl. Sci.,2022,12(9):4560-4579.
Yang P,Zhang S,Chen X F,Liu X H,Wang Z,Li Y W. Mater. Horizons,2020,7(3):746-761.
Hong S,Na Y S,Choi S,Song I T,Kim W Y,Lee H. Adv. Funct. Mater.,2012,22(22):4711-4717.
Barclay T G,Hegab H M,Clarke S R,Ginic-Markovic M. Adv. Mater. Interfaces,2017,4(19):1601192-1601230.
Hong S,Wang Y,Park S,Lee H. Sci. Adv.,2018,4(9):eaat7457-7467.
Kang X M,Cai W H,Zhang S,Cui S X. Polym. Chem.,2017,8(5):860-864.
Delparastan P,Malollari K G,Lee H,Messersmith P B. Angew. Chem. Int. Ed.,2019,58(4):1077-1082.
D'ischia M,Napolitano A,Ball V,Chen C T,Buehler M J. Acc. Chem. Res.,2014,47(12):3541-3550.
Hong Y N,Lam J W Y,Tang B Z. Chem. Soc. Rev.,2011,40(11):5361-5388.
Zhang X Y,Wang S Q,Xu L X,Feng L,Ji Y,Tao L,Li S X,Wei Y. Nanoscale,2012,4(18):5581-5584.
Qu K G,Wang J S,Ren J S,Qu X G. Chem. Eur. J.,2013,19(22):7243-7249.
Xiong B,Chen Y,Shu Y W,Shen B,Chan H N,Chen Y Z,Zhou J L,Wu H K. Chem. Commun.,2014,50(88):13578-13580.
Chen X,Yan Y,Müllner M,Van Koeverden M P,Noi K F,Zhu W,Caruso F. Langmuir,2014,30(10):2921-2925.
Quignard S,D'ischia M,Chen Y,Fattaccioli J. ChemPlusChem,2014,79(9):1254-1257.
Liu M Y,Ji J Z,Zhang X Y,Zhang X Q,Yang B,Deng F J,Li Z,Wang K,Yang Y,Wei Y. J. Mater. Chem. B,2015,3(17):3476-3482.
Zhao C X,Zuo F,Liao Z J,Qin Z L,Du S N,Zhao Z G. Macromol. Rapid Commun.,2015,36(10):909-915.
Lin J H,Yu C J,Yang Y C,Tseng W L. PCCP,2015,17(23):15124-15130.
Feng J,Chen Y L,Han Y X,Liu J J,Ren C,Chen X G. Anal. Chim. Acta,2016,926:107-117.
Kong X J,Wu S,Chen T T,Yu R Q,Chu X. Nanoscale,2016,8(34):15604-15610.
Kim S H,Sharker S M,Lee H,In I,Lee K D,Park S Y. RSC Adv.,2016,6(66):61482-61491.
Liu B W,Han X,Liu J W. Nanoscale,2016,8(28):13620-13626.
Zhao S Z,Song X,Bu X M,Zhu C,Wang G,Liao F,Yang S W,Wang M. J. Appl. Polym. Sci.,2017,134(18):44784-44793.
Kim S H,In I,Park S Y. Biomacromolecules,2017,18(6):1825-1835.
Zhao Y Y,Li L,Yu R Q,Chen T T,Chu X. Anal. Methods,2017,9(37):5518-5524.
Ding P,Wang H Y,Song B,Ji X Y,Su Y,He Y. Anal. Chem.,2017,89(15):7861-7868.
Yu M,Lu Y,Tan Z J. Talanta,2017,168:16-22.
Mazrad Z A I,Choi C A,Kwon Y M,In I,Lee K D,Park S Y. ACS Appl. Mater. Interfaces,2017,9(38):33317-33326.
Chang L Q,Chen F,Zhang X K,Kuang T R,Li M,Hu J M,Shi J F,Lee L J,Cheng H Y,Li Y W. ACS Appl. Mater. Interfaces,2017,9(19):16553-16560.
Lin Z Z,Li M J,Lv S Z,Zhang K Y,Lu M H,Tang D P. J. Mater. Chem. B,2017,5(43):8506-8513.
Ci Q Q,Liu J H,Qin X F,Han L Q,Li H,Yu H,Lim K-L,Zhang C W,Li L,Huang W. ACS Appl. Mater. Interfaces,2018,10(42):35760-35769.
Ma B,Liu F,Zhang S,Duan J,Kong Y,Li Z,Tang D,Wang W,Ge S,Tang W,Liu H. J. Mater. Chem. B,2018,6(40):6459-6467.
Pang Y J,Shi Y,Pan Y D,Yang Y F,Long Y F,Zheng H Z. Sens. Actuators B,2018,263:177-182.
Yin H G,Zhang K L,Wang L J,Zhou K,Zeng J,Gao D,Xia Z N,Fu Q F. Nanoscale,2018,10(37):18064-18073.
Xue Q,Cao X Y,Zhang C L,Xian Y Z. Microchim. Acta,2018,185(4):1-9.
Gu G E,Park C S,Cho H J,Ha T H,Bae J,Kwon O S,Lee J S,Lee C S. Sci. Rep.,2018,8(1):4393-4401.
Chen M H,Wen Q,Gu F L,Gao J W,Zhang C C,Wang Q M. Chem. Eng. J.,2018,342:331-338.
Tang L,Mo S,Liu S G,Liao L L,Li N B,Luo H Q. Sens. Actuators B,2018,255:754-762.
Wang Z,Xu C,Lu Y X,Wei G Y,Ye G,Sun T X,Chen J. Chem. Eng. J.,2018,344:480-486.
Tang L,Mo S,Liu S G,Li N,Ling Y,Li N B,Luo H Q. Sens. Actuators B,2018,259:467-474.
Shi Y G,Xu D Z,Liu M Y,Fu L H,Wan Q,Mao L C,Dai Y F,Wen Y Q,Zhang X Y,Wei Y. Mater. Sci. Eng. C,2018,82:204-209.
Liu Y,Yang M Z,Li J J,Zhang W,Jiang X Y. Anal. Chem.,2019,91(10):6754-6760.
Du F K,Li M R,Mo Y J,Tan X C,Huang N Y,Huang A N. J. Instrum. Anal.(杜方凯,李梦汝,莫远健,谭学才,黄乃阳,黄安娜. 分析测试学报),2019,38(11):1347-1352.
Zhong Z T,Li J. Talanta,2019,197:584-591.
Sebastian P J,Jun-Ray M,Alexia M,Alexandre P,Valeria Q,Isabelle M,Rafik N. PCCP,2020,22(29):16595-16605.
Li F L,Chen Y P,Lin R X,Miao C F,Ye J H,Cai Q Q,Huang Z J,Zheng Y J,Lin X H,Zheng Z F,Weng S H. Anal. Chim. Acta,2021,1148:338201-338211.
Luo J S,Jin Y P,Guo Y M,Li Q. Inorg. Chem. Commun.,2022,138:109307-109313.
Li Q,Guo Y M,Li G L. Spectrochim. Acta A,2022,274:121097-121104.
Liu X F,Jin M M,Zou L Y,Mei W J,Yang X H,Wang Q,Wang H Q,Zou Q Q,Wang K M. ACS Appl. Nano Mater.,2022,5(2):2038-2047.
Chen L J,Chen C C,Yan Y H,Yang L L,Liu R Y,Zhang J J,Zhang X,Xie C G. Polymers,2023,15(8):1892-1904.
Zhang H D,Wu S F,Xing Z H,Wang J X,Wang H B,Fang L X. Anal. Lett.,2023.DOI:10.1080/00032719.2023.2215883http://dx.doi.org/10.1080/00032719.2023.2215883.
Ruppel S S,Li R L,Liang J F. Colloid Surf. A,2023,673:131810-131819.
Li Q,Guo Y M,He X Y,Li G L. Talanta,2023,265:124865-124875.
Momeni S,Ramezani A M,Talebi S,Nabipour I. J. Food Compost. Anal.,2023,120:105296-105304.
Huang J H,Chen J T,Yao T,He J F,Jiang S,Sun Z H,Liu Q H,Cheng W R,Hu F C,Jiang Y,Pan Z Y,Wei S Q. Angew. Chem. Int. Ed.,2015,54(30):8722-8727.
An T,Lee N,Cho H J,Kim S,Shin D S,Lee S M. RSC Adv.,2017,7(49):30582-30587.
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构