山西大学 环境科学研究所,山西 太原 030006
弓晓娟,博士,教授,研究方向:环境与生命分析化学,E-mail:gxj1124@sxu.edu.cn
纸质出版日期:2024-01-15,
收稿日期:2023-08-24,
修回日期:2023-10-15,
扫 描 看 全 文
梁美琪,王子涵,刘洋等.基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ)[J].分析测试学报,2024,43(01):182-190.
LIANG Mei-qi,WANG Zi-han,LIU Yang,et al.Optical Dual-mode and Smartphone Imaging for Cr(Ⅵ) Detection Based on Manganese,Chlorine and Nitrogen Co-doped Carbon Dots[J].Journal of Instrumental Analysis,2024,43(01):182-190.
梁美琪,王子涵,刘洋等.基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ)[J].分析测试学报,2024,43(01):182-190. DOI: 10.12452/j.fxcsxb.23082401.
LIANG Mei-qi,WANG Zi-han,LIU Yang,et al.Optical Dual-mode and Smartphone Imaging for Cr(Ⅵ) Detection Based on Manganese,Chlorine and Nitrogen Co-doped Carbon Dots[J].Journal of Instrumental Analysis,2024,43(01):182-190. DOI: 10.12452/j.fxcsxb.23082401.
六价铬[Cr(Ⅵ)]具有毒性和致癌性,严重威胁人类健康,因此开发快速、灵敏、精准检测Cr(Ⅳ)的方法具有重要意义。该研究以邻苯二胺、对氨基苯甲酸、氯化锰和浓盐酸为反应前体,通过一步水热法合成了锰、氯、氮共掺杂碳点(Mn,Cl,N-CDs)。Mn,Cl,N-CDs能发出明亮且稳定的红色荧光,荧光量子产率为5.3%。基于聚集诱导和动态猝灭效应,Cr(Ⅵ)可使Mn,Cl,N-CDs的荧光强度和吸光度发生显著变化,基于此,开发了荧光和比色双模传感器及智能手机成像法,实现了Cr(Ⅵ)的灵敏检测。荧光法和比色法检测Cr(Ⅵ)的线性范围分别为33.8~469.5 μmol/L和2.4~80.7 μmol/L,智能手机成像检测Cr(Ⅵ)的线性范围为20.0~160.0 μmol/L(可见光辐照)和80.0~170.0 μmol/L(紫外光辐照)。该文不仅成功构建了智能手机成像定量检测Cr(Ⅵ)的传感器,同时为基于碳量子点构筑智能、便携、可视化传感器提供了新思路。
Hexavalent chromium[Cr(Ⅵ)] is toxic and carcinogenic,posing a significant threat to human health. Therefore,the development of rapid,sensitive and accurate methods for detecting Cr(Ⅵ) is of great importance. Herein,manganese,chlorine and nitrogen co-doped carbon dots(Mn,Cl,N-CDs) were synthesized by a one-step hydrothermal method using
o
-phenylenediamine,
p
-aminobenzoic acid,manganese chloride and concentrated hydrochloric acid as reaction precursors. Mn,Cl,N-CDs can emit bright and stable red fluorescence with a fluorescence quantum yield of 5.3%. Based on the aggregation-induced and dynamic quenching effects,the addition of Cr(Ⅵ) leads to a significant change in the fluorescence intensity and absorbance of Mn,Cl,N-CDs. Consequently,a dual-mode sensor for fluorescence and colorimetry,along with a smartphone imaging method,was developed to achieve sensitive detection of Cr(Ⅵ). The linear ranges of Cr(Ⅵ) were 33.8-469.5 μmol/L and 2.4-80.7 μmol/L for fluorescence and colorimetric methods,respectively,and 20.0-160.0 μmol/L(visible light irradiation) and 80.0-170.0 μmol/L(UV irradiation) for smartphone imaging. This paper not only successfully constructed a sensor for the quantitative detection of Cr(Ⅵ) using smartphone imaging,but also introduced an innovative approach for creating intelligent,portable and visual sensors based on CDs.
锰、氯、氮共掺杂碳点光学双模智能手机成像Cr(Ⅵ)
manganese,chlorine and nitrogen co-doped carbon dotsoptical dual-modesmartphone imagingCr(Ⅵ)
Han L Z,Gu H P,Lu W J,Li H Y,Peng W X,Ma N L,Lam S S,Sonne C. Chemosphere,2023,344:140307.
Halder S,Chakraborty C. J. Environ. Chem. Eng.,2023,11:110183.
Sharma A,Kapoor D,Wang J F,Shahzad B,Kumar V,Bali A S,Jasrotia S,Zheng B S,Yuan H W,Yan D L. Plants,2020,9(1):100.
Chen Q Y,Murphy A,Sun H,Costa M. Toxicol. Appl. Pharmacol.,2019,377:114636.
Li T,Dai L,Huang Y X,Pan S W,Pang Z J,Zou J. J. Environ. Chem. Eng.,2021,9(5):105517.
Chen B H,Jiang S J,Sahayam A C. Food Chem.,2020,324(15):126698.
Spanu D,Monticelli D,Binda G,Dossi C,Rampazzi L,Recchia S. J. Hazard. Mater.,2021,412:125280.
Goodarzi L,Bayatloo M R,Chalavi S,Nojavan S,Rahmani T,Azini S B. Food Chem.,2022,373:131442.
Liu T,Zhang S,Fan X Y,Yang D,Wang M,Shao X D,Wang S H,Yue Q L. J. Fluoresc.,2022,32:2343-2350.
Mathew A,Varghese A,Devi S,Pinheiro D. Mater. Today Commun.,2023,37:106991.
Zhang H Y. Synthesis,Characterization and Sensor Applications of Metal-doped Fluorescent Carbon Dots. Dalian:Dalian Polytechnic University(张洪禹. 金属掺杂荧光碳点的合成、表征及应用. 大连:大连工业大学),2017.
Wang Z H,Hao Y M,Chen Y H,Dong W J,Liu Y,Li J,Gao H,Wang X,Shuang S M,Dong C,Gong X J. J. Hazard. Mater.,2023,445:130456.
Xiao Y X,Dong W J,Wang H P,Hao Y M,Wang Z H,Shuang S M,Dong C,Gong X J. Spectrochim. Acta A,2021,261:120028.
Zhang L,Xing H Z,Liu W,Wang Z H,Hao Y M,Wang H P,Dong W J,Liu Y,Shuang S M,Dong C,Gong X J. ACS Appl. Nano Mater.,2021,4(12):13734-13746.
Vedernikova A A,Miruschenko M D,Arefina I A,Babaev A A,Stepanidenko E A,Cherevkov S A,Spiridonov I G,Danilov D V,Koroleva A V,Zhizhin E V,Ushakova E V. Nanomaterials,2022,12(19):3314.
Zhou Y H,Liu J,Liu Y,Song S M,Dong C. Res. Explor. Lab.(周叶红,刘竞,刘洋,宋胜梅,董川. 实验室研究与探索),2022,41(7):11-17.
Gong X J,Zhang Q Y,Gao Y F,Shuang S M,Choi M M F,Dong C. ACS Appl. Mater. Interfaces,2016,8(18):11288-11297.
Goswami J,Rohman S S,Guha A K,Basyach P,Sonowal K,Borah S P,Saikia L,Hazarika P. Mater. Chem. Phys.,2022,286:126133.
Wang G Q,Zhang S R,Cui J Z,Gao W S,Rong X,Lu Y X,Gao C Z. Anal. Chim. Acta,2022,1195:339478.
Liu S H,Cui J L,Huang J B,Tian B S,Jia F,Wang Z L. Spectrochim. Acta A,2019,206:65-71.
Tall A,Cunha F A,Kabore B,Barbosa C E S,Rocha U,Sales T O,Goulart M O F,Tapsoba I,Santos J C C. Microchem. J.,2021,166:106219.
Zhang H Q,Huang Y H,Hu Z B,Tong C Q,Zhang Z S,Hu S R. Microchim. Acta,2017,184:1547-1553.
Guo J F,Hou C J,Yang M,Huo D Q,Li J J,Fa H B,Luo H B,Yang P. Anal. Methods,2016,8:5526-5532.
Guo J F,Hou D Q,Yang M,Hou C J,Li J J,Fa H B,Luo H B,Yang P. Talanta,2016,161:819-825.
He S Z,Lin X,Liang H,Xiao F B,Li F F,Liu C,Fan P F,Yang S Y,Liu Y. Anal. Methods,2019,11:5819-5825.
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构