1.山西医科大学 汾阳学院,山西 汾阳 032200
2.山西医科大学第二医院,山西 太原 030000
3.山西师范大学 文学院,山西 太原 030031
王倩倩,硕士,研究方向:有机无机复合材料的合成、表征、应用,E-mail:1033590038@qq.com
纸质出版日期:2024-02-15,
收稿日期:2023-08-16,
修回日期:2023-10-25,
扫 描 看 全 文
王倩倩,王海,史晓敏.ESI-MS研究六钼酸盐芳香亚胺衍生物的合成反应及气相稳定性[J].分析测试学报,2024,43(02):322-327.
WANG Qian-qian,WANG Hai,SHI Xiao-min.Study on Synthesis and Gas Phase Stability of Aromatic Imine Derivatives of Hexamolybdate by ESI-MS[J].Journal of Instrumental Analysis,2024,43(02):322-327.
王倩倩,王海,史晓敏.ESI-MS研究六钼酸盐芳香亚胺衍生物的合成反应及气相稳定性[J].分析测试学报,2024,43(02):322-327. DOI: 10.12452/j.fxcsxb.23081604.
WANG Qian-qian,WANG Hai,SHI Xiao-min.Study on Synthesis and Gas Phase Stability of Aromatic Imine Derivatives of Hexamolybdate by ESI-MS[J].Journal of Instrumental Analysis,2024,43(02):322-327. DOI: 10.12452/j.fxcsxb.23081604.
该文通过合成两种Lindqvist型六钼酸芳香亚胺含氯衍生物TBA
2
[Mo
6
O
18
(N-C
6
H
4
-Cl-
p
)](Ⅰ)和TBA
2
[Mo
6
O
18
(N-C
6
H
4
-Cl-
o
)](Ⅱ),并采用电喷雾质谱法(ESI-MS)实时监测其合成反应过程,对两个反应体系中各物质含量随反应时间的变化趋势进行分析,考察了多酸芳香亚胺衍生物中芳香胺不同取代基的位置对衍生物合成反应速率及结构稳定性的影响。并通过碰撞诱导解离技术(CID)研究了两种衍生物离子的气相裂解反应,获得了其气相裂解途径及结构稳定性信息。ESI-MS实时监测结果显示,两种衍生物合成过程中,0~3 h内产物生成速率较小,而3~6 h期间反应速率最大,6~9 h次之,9~12 h反应速率明显减小。对氯苯胺的p
K
b
小于邻氯苯胺,是衍生物Ⅰ的合成反应速率大于Ⅱ的重要原因。CID结果表明,相较于Ⅰ离子,Ⅱ离子的气相结构稳定性更弱,主要原因是Cl原子取代基的综合电子效应为吸电子效应,其在邻位取代比对位取代距离维系离子稳定性的Mo≡N键更近,导致Ⅱ中Mo≡N键电子云密度下降程度更大,离子的稳定性比Ⅰ更弱。综上,ESI-MS是一种研究多酸有机官能化衍生物的可靠技术,可为该类衍生物结构稳定性的研究及后期的导向设计合成提供基础信息。
Organic aromatic amines in aromatic imine functionalized polyoxometalate derivatives have different substituent positions,to investigate its impact on the derivatives synthesis reaction rate and structural stability,two aromatic imines containing chlorine derivatives of Lindqvist type hexamolybdate were synthesized,they are TBA
2
[Mo
6
O
18
(N-C
6
H
4
-Cl-
p
)](Ⅰ) and TBA
2
[Mo
6
O
18
(N-C
6
H
4
-Cl-
o
)](Ⅱ). The reaction process was monitored in real time by electrospray ionization mass spectrometry(ESI-MS),the variation trend with reaction time of each species in the two reaction systems was analyzed,so as to study the effect of substituent position on the reaction rate. The gas phase cracking reactions of two derivative ions were studied through collision induced dissociation technique(CID),thus obtain on their gas phase cracking pathway and structural stability information. The ESI-MS real-time monitoring results showed,product generation rate is relatively low during 0-3 hours,while the reaction rate was the biggest during 3-6 hours,followed by 6-9 hours,and the reaction rate significantly decreased during 9-12 hours in the synthesis process of Ⅰ and Ⅱ. The p
K
b
of
p
-chloroaniline is smaller than
o
-chloroaniline,which is an important reason why the synthesis reaction rate of Ⅰ is higher. The CID results indicate that compared to the Ⅰ ion,the gas-phase structural stability of the Ⅱ ion is weaker. The main reason is that the comprehensive electronic effect of the Cl atom substituent is the electron withdrawing effect,which is closer to the Mo≡N bond that maintains ion stability in ortho substitution than in para substitution. This leads to a greater decrease in the electron cloud density of the Mo≡N bond in the Ⅱ ion,and the stability of the ion is weaker than that of the Ⅰ. In summary,ESI-MS is a reliable technique for studying polyoxometalates organic functionalized derivatives,which can provide basic information for the study of structural stability and subsequent directed design and synthesis of such derivatives.
电喷雾质谱法(ESI-MS)六钼酸盐的芳香亚胺衍生物取代基合成反应气相稳定性
electrospray ionization mass spectrometry(ESI-MS)aromatic imine derivatives of hexamolybdatesubstituent groupsynthesisgas phase stability
Rhule J T,Hill C L. Chem. Rev.,1998,98:327-357.
Gouzerh P,Proust A. Chem. Rev.,1998,98:77-111.
Rhule J T,Neiwert W A,Hardcastle K I,Do B T,Hill C L. J. Am. Chem. Soc.,2001,123(48):12101-12102.
Ogliaro F,De Visser S P,Cohen S,Sharma P K,Shaik S. J. Am. Chem. Soc.,2002,124(11):2806-2817.
Song Y F,Long D L,Ritchie C,Cronin L. Chem. Rec.,2011,11(3):158-171.
Zhang J,Xiao F P,Hao J,Wei Y G. Dalton Trans.,2012,41(13):3599-3615.
Lv C L,Khan R N N,Zhang J,Hu J J,Hao J,Wei Y G. Chem. Eur. J.,2013,19(4):1174-1178.
Janjua M R S A,Liu C G,Guan W,Zhuang J,Muhammad S,Yan L K,Su Z M. J. Phys. Chem. A,2009,113(15):3576-3587.
Yu H,Le S L,Zeng X H,Zhang J Y,Xie J L. Inorg. Chem. Commun.,2014,39:135-139.
Guo H,Li S Z ,Xiong X X,Li D,Liu Z Y,Wang L S,Wu P F. Polyhedron,2015,92:1-6.
Chen W Z,Xiong W H,Xu S,Gao X,Wu P F,Xiao Z C. J. Central China Norm. Univ.:Nat. Sci. (陈伟洲,熊伟豪,徐霜,高霞,伍平凡,肖滋成. 华中师范大学学报:自然科学版),2019,53(4):524-533.
Patricio H I,Kerry W A,Walter C M,Marlen C C,Verónica P G,Diego V Y. Molecules,2019,24(44):1-14.
Tang Z Y. Acta Phys.-Chim. Sin.(唐智勇. 物理化学学报),2020,36(9):4-5.
Long D L,Cronin L. Angew. Chem. Int. Ed.,2008,47(23):4384-4387.
Long D L,Cronin L. J. Am. Chem. Soc.,2008,39(20):1830-1832.
Yan J,Cronin L. J. Am. Chem. Soc.,2010,132(33):11410-11411.
Mitchell S G,Cronin L. Angew. Chem.,2011,50(39):9154-9157.
Ma M T,Wedd A G. J. Am. Soc. Mass Spectrom.,2012,23(2):366-374.
Cao J,Xu C. J. Am. Soc. Mass Spectrom.,2013,24:884-894.
Cao J ,Wang Q Q ,Liu C,An S Q. J. Am. Soc. Mass Spectrom.,2018,29:1331-1334.
Yan J,Long D L,Wilson E F,Cronin L. Angew. Chem. Int. Ed.,2009,48(24):4376-4380.
Miras H N,Sorus M. J. Am. Chem. Soc.,2012,134(16):6980-6983.
Li Q,Wei Y G,Hao J,Zhu Y L,Wang L S. J. Am. Chem. Soc.,2007,129:5810-5811.
Xiao F P,Hao J,Zhang J,Lv C L,Yin P C,Wang L S,Wei Y G. J. Am. Chem. Soc.,2010,132:5956-5957.
Zhang J,Xiao F P,Hao J,Wei Y G. J. Am. Chem. Soc.,2008,130:14-15.
Ding P,Miu J. Edu. Chem.(丁萍,缪建. 化学教学),2011,5:52-55.
Wilson E F,Cronin L. Angew. Chem. Int. Ed.,2011,50:3720-3724.
David W M,Brodbelt J S. J. Am. Soc. Mass Spectrom.,2003,14:383-392.
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构