NING Jing, ZHONG Yue-yan, LIU Xue-ying, XIE Li-xia, WANG Tong. Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species[J/OL]. Journal of instrumental analysis, 2025.
DOI:
NING Jing, ZHONG Yue-yan, LIU Xue-ying, XIE Li-xia, WANG Tong. Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species[J/OL]. Journal of instrumental analysis, 2025. DOI: 10.12452/j.fxcsxb.250223113.
Integration Strategy Combined with Improved YOLOv8 Model for Identification of Microalgae Species
To address the limitations of traditional microalgae detection methods
which rely on manual microscopy
result in prolonged analysis times
and produce results that are highly susceptible to the technical expertise of personnel
an integrated image preprocessing strategy combined with an enhanced YOLOv8 deep learning model for microalgae identification was proposed. A multi-method integration strategy of Gaussian fuzzy
Laplacian operator and principal component analysis was used to preprocess microalgae images. In the improved model
the SPD-Conv module was incorporated to mitigate the loss of fine-grained information
thereby improving the detection performance for lo
w-resolution images and small-sized microalgae. A slim-neck architecture was employed to reduce the parameter count and model size
while the SimSPPF was introduced to expedite model convergence and enhance operational efficiency. The experimental results demonstrated that the multi-method integrated preprocessing strategy was able to substantially reduce image noise
and enhance the definition of microalgal contours. Under identical conditions
the improved YOLOv8 model achieved a mean average precision(
mAP
) of 92.2%
representing a 5.1% improvement over the original YOLOv8 model. Especially
it demonstrated superior performance in detecting small-sized microalgae. In comparison to Faster-RCNN
SSD
RTDETR-l
YOLOv3
YOLOv5
YOLOv6 and YOLOv7 models
the
mAP
of improved YOLOv8 model increased by 40.2%
6.8%
14.5%
1.2%
5.7%
4.7% and 0.8%
respectively. This method offers valuable insights for advancing microalgae species detection technology.
关键词
Keywords
references
Lobus N V , Kulikovskiy M S . Biology , 2023 , 12 ( 1 ): 92 .
Chen N S , Zhang M J , Liu S Y , Cui Z M . Oceanol. Limnol. Sin (陈楠生,张梦佳,刘淑雅,崔宗梅. 海洋与湖沼), 2023 , 54 : 599 - 624 .
Yan T , Li X D , Tan Z J , Yu R C , Zou J Z . Harmful Algae , 2022 , 111 : 102148 .
Smith V H , Schindler D W . Trends Ecol. Evol. , 2009 , 24 ( 4 ): 201 - 207 .
Barsanti L , Birindelli L , Gualtieri P . Environ. Sci. Processes Impacts , 2021 , 23 ( 10 ): 1443 - 1457 .
Chong J W R , Khoo K S , Chew Kit W , Vo D N , Balakrishnan D , Banat F , Munawaroh H S H , Iwamoto K , Show P L . Bioresour. Technol. , 2023 , 369 : 128418 .
Xu Z , Jiang Y , Ji J , Forsberg E , Li Y , He S . Opt. Express , 2020 , 28 ( 21 ): 30686 - 30700 .
Wu Z G . Research and Application of Microalgae Lightweight Detection Algorithm Based on Improved YOLO v7 . Shanghai : Shanghai Ocean University(吴志高. 基于改进YOLOv7的微藻轻量级检测算法研究与应用.上海:上海海洋大学) , 2023 .
Affonso C , Rossi A L D , Vieira F H A , Carvalho A C P D L F D . Expert Syst. Appl. , 2017 , 85 : 114 - 122 .
Alzubaidi L , Zhang J , Humaidi A J , Ai-Dujaili A , Duan Y , Ai-Shamma O , Santamaria J . J. Big Data , 2021 , 8 : 1 - 74 .
Redmon J , Divvala S , Girshick R , Farhadi A . IEEE Conference on Computer Vision and Pattern Recognition , Las Vegas, NV, USA , 2016 .
Park J , Baek J , You K , Nam S W , Kim J . J. KSWE , 2021 , 37 ( 4 ): 275 - 285 .
Park J , Baek J , Kim J , You K , Kim K . Water , 2022 , 14 ( 8 ): 1275 .
Su A . Research on Portable Microscopic System for Field Detection of Microalgae . Jinan : Shandong University (苏昂.用于微藻现场检测的便携式显微系统研究. 济南:山东大学), 2022 .
Wang L C , Chen C J , Zou Y W , Xie T . J. Electron. Meas. Instrum. (汪鲁才,陈春江,邹伊雯,谢婷.电子测量与仪器学报), 2024 , 38 ( 4 ): 46 - 54 .
Sunkara R , Luo T . European Conference on MachineLearning and Principles andPractice of Knowledge Discovery inDatabases , Grenoble , France , 2022 .
Li H , Li J , Wei H , Liu Z , Zhan Z , Ren Q . J. Real-Time Image Process. , 2024 , 21 ( 3 ): 62 .
Hu H , Zhu Z . Adv. Eng. Inf. , 2023 , 55 : 101824 .
He K , Zhang X , Ren S , Sun J . IEEE Trans. Pattern Anal. Mach. Intell , 2015 , 37 ( 9 ): 1904 - 1916 .
Kasper-Eulaers M , Hahn N , Berger S , Sebulonsen T , Kummervold P E . Algorithms , 2021 , 14 ( 4 ): 114 .