Hepatitis B surface antigen(HBsAg) is an important marker of hepatitis B virus infection. In this article,a novel method of reagent-free visible-near-infrared(Vis-NIR) spectral pattern recognition for serum HBsAg infection was studied. A total of 1 243 clinical serum samples(HBsAg positive 601 and negative 642) were collected,and a training-prediction-validation experimental design was used. A novel CNN integrated algorithm based on multi-cale convolution,SE Net attention mechanism and multi-scale dilated convolutions was constructed,which together with the classic partial least squares-discriminant analysis(PLS-DA) and the ordinary shallow CNN algorithm,were used to establish the Vis-NIR spectral discrimination model for HBsAg positive and negative serums. The standard normal variable(SNV) transform was used for spectral preprocessing. The PLS-DA and new types of CNN models based on the SNV spectra of near-infrared region(780-1 118nm) achieved significantly better modeling results,and the sensitivity(SEN) of the new CNN model reached a significantly higher 99.3%,and the false negative rate(FNR) reached a significantly lower 0.7%. The results show the feasibility of using serum Vis-NIR spectra to accurately identify HBsAg infection,and the proposed new types of deep learning algorithm is also promising for application in other spectral analysis fields.
关键词
Keywords
references
Bec' K B , Grabska J , Huck C W . Molecules , 2020 , 25 ( 12 ): 2948 .
Fonseca A C S , Pereira J F Q , Honorato R S , Bro R , Pimentel M F . Spectrochim. Acta A , 2022 , 267 : 120533 .
Yao L J , Xu W Q , Pan T , Chen J M . J. Innovative Opt. Health Sci. , 2018 , 11 ( 2 ): 1850005 .
Yuan L , Zhang J , Xu J H , Yao L J , Wang D W , Pan T . Sense the Real Change:Proceedings of the 20th International Conference on Near Infrared Spectroscopy . Singapore : Springer , 2022 : 87 - 192 .
Wang Q , Wang T , Cao L , Mu A , Fu S , Wang P , Gao Y , Ji W X , Liu Z Y , Du Z Q , Guddat L W , Zhang W C , Li S , Li X M , Lou Z Y , Wang X X , Hu Z Y , Rao Z H . Science , 2024 , 385 ( 6714 ): 1217 – 1224 .
Zeng J , Guo Y , Han Y Q , Li Z M , Yang Z X , Chai Q Q , Wang W , Zhang Y Y , Fu C L . Molecules , 2021 , 26 ( 3 ): 749 .
Gan F , Luo J . Chemom. Intell. Lab. , 2023 , 232 : 104710 .
Huang H H , Luo J F , Gan F , Hopke P K . Appl. Sci. , 2023 , 13 ( 14 ): 8494 .
Zhu Y K , Lu C H , Zhang Y J , Jiang W W . Spectrosc. Spectral Anal. (朱御康,鲁昌华,张玉钧,蒋薇薇. 光谱学与光谱分析), 2024 , 9 : 2607 - 2612 .
Deng T M , Liu X H , Wang L . Electronics-Switz. , 2022 , 11 ( 17 ): 2709 .
Hu J , Shen L , Albanie S , Sun G , Wu E . IEEE Trans. Pattern Anal. Mach. Intell. , 2020 , 42 ( 8 ): 2011 – 2023 .
He K M , Zhang X Y , Ren S Q , Sun J . 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) , Las Vegas,USA , 2016 : 770 - 778 .
Liu H T , Hong X P , Xi J , Menne S , Hu J M , Wang J C Y . Sci. Adv. , 2022 , 8 ( 31 ): eabo4184 .
Gu J X , Wang Z H , Kuen J , Ma L Y , Shahroudy A , Shuai B , Liu T , Wang X X , Wang G , Cai J F , Chen T H . Pattern. Recognit. , 2018 , 77 : 354 - 377 .
Barnes R J , Dhanoa M S , Lister S J . Appl. Spectrosc. , 1989 , 43 ( 5 ): 772 – 777 .
Dhanoa M S , Lister S J , Sanderson R , Barnes R J . J. Near Infrared Spectrosc. , 1994 , 2 ( 1 ): 43 – 47 .
Huang Y , Liu H , Lu X , Yao L , Chen J , Pan T . Spectrochim. Acta A , 2024 , 317 : 124394 .
Puertas G , Cazón P , Vázquez M . LWT Technol. , 2023 , 174 : 114429 .
Chen J M , Peng L J , Han Y , Yao L J , Zhang J , Pan T . Spectrochim. Acta A , 2018 , 193 : 499 - 506 .