1.南开大学 物理科学学院 弱光非线性光子学教育部重点实验室,天津 300071
2.江苏大学 食品与生物工程学院,江苏 镇江 212013
3.宁波海关技术中心,浙江 宁波 315048
王斌,博士,讲师,研究方向:光学测试与计量,E-mail: wb@nankai.edu.cn
扫 描 看 全 文
张文杰,焦安然,田静等.卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用[J].分析测试学报,2021,40(07):1062-1067.
ZHANG Wen-jie,JIAO An-ran,TIAN Jing,et al.Convolutional Neural Network and Support Vector Machine Models for Plastic Classification by Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2021,40(07):1062-1067.
张文杰,焦安然,田静等.卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用[J].分析测试学报,2021,40(07):1062-1067. DOI: 10.3969/j.issn.1004-4957.2021.07.013.
ZHANG Wen-jie,JIAO An-ran,TIAN Jing,et al.Convolutional Neural Network and Support Vector Machine Models for Plastic Classification by Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2021,40(07):1062-1067. DOI: 10.3969/j.issn.1004-4957.2021.07.013.
机器学习算法的应用使得塑料自动分类成为可能,而废旧塑料的分类回收对保护环境、节约资源有重要意义。该文结合近红外光谱分析技术,比较了使用一维卷积神经网络(1D CNN)和多元散射处理后支持向量机算法(MSC-SVM)建模的效果,及对PP新生料、PP再生料、PE新生料、PE再生料4种塑料分类的准确率。基于100个塑料样本近红外光谱数据的分类结果表明,验证集上1D CNN模型准确率为91.5%,MSC-SVM模型准确率为90.8%。1D CNN模型用于识别PP和PE新生料时,准确率可达100%。证明1D CNN建模方法在小数据集上进行准确塑料分类是可行的。
Nowadays it is possible to automatically classify plastic waste by machine learning algorithms, which is of great significance for protecting the natural environment and saving resources. To establish better plastic classification models, the performances of multiplicative scatter correction-support vector machines(MSC-SVM) model and one-dimensional convolutional neural network(1D CNN) model were compared in identifying 4 types of plastic in this paper, as well as the accuracies of NIRS technique for classifying PP new raw material, PP recycled material, PE new raw material and PE recycled material, respectively. Based on the spectra data of 100 plastic samples, the experiment results showed that in validation set, the accuracy for MSC-SVM model is 90.8% while that for 1D CNN model is 91.5%. Particularly, 1D CNN model provided excellent classification results in identifying PE and PP new raw material samples with the accuracies reached up to 100%, which indicated that 1D CNN model is efficient to classify different types of plastic on small dataset.
近红外光谱卷积神经网络支持向量机塑料分类
near-infrared spectroscopyconvolutional neural networksupport vector machineplastic classification
European Plastics Converters. EuPC publishes results of its 2nd survey on the use of recycled plastics materials. [2020-10-26]. https://www.plasticsconverters.eu/post/2019/01/10/eupc-publishes-results-of-its-2nd-survey-on-the-use-of-recycled-plastics-materialshttps://www.plasticsconverters.eu/post/2019/01/10/eupc-publishes-results-of-its-2nd-survey-on-the-use-of-recycled-plastics-materials.
Shent H, Pugh R J, Forssberg E. Resour. Conserv. Recycl., 1999, 25(2): 85-109.
Wang C Q, Wang H, Fu J G, Liu Y N. Waste Manage., 2015, 41: 28-38.
Ruj B, Pandey V, Jash P, Srivastava V K. Int. J. Appl. Sci. Eng. Res., 2015, 4(4): 564-571.
Wahab D A, Hussain A, Scavino E, Mustafa M M, Basri H. Am. J. Appl. Sci., 2006, 3(7): 1924-1928.
Unnikrishnan V K, Choudhari K S, Kulkarni S D, Nayak R, Kartha V B, Santhosh C. RSC Adv., 2013, 3(48): 25872-25880.
Stefas D, Gyftokostas N, Bellou E, Couris S. Atoms, 2019, 7(3): 79.
Wang Q, Wu X M, Chen L C, Yang Z, Fang Z. Appl. Spectrosc., 2017, 71(11): 2538-2548.
Allen V, Kalivas J H, Rodriguez R G. Appl. Spectrosc., 1999, 53(6): 672-681.
Bian X H, Yang S, Li L L, Guo Y G, Liu W. China Achiev. Sci. Technol.(卞希慧, 杨盛, 李露露, 郭玉高,刘巍. 中国科技成果), 2015, 2015(13):10-12.
Kaihara M, Satoh M, Satoh M. Anal. Sci., 2007, 23(7): 921-924.
Wang D J, Zhou X Y, Jin T M, Hu X N, Zhong J E, Wu Q T. Spectrosc. Spectral Anal.(王多加,周向阳,金同铭,胡祥娜,钟娇娥,吴启堂. 光谱学与光谱分析),2004,24(2): 447-450.
Yin F F, Yan L, Han Q X, Xu Y H. Environ. Eng.(尹凤福,闫磊,韩清新,徐衍辉. 环境工程), 2017, 35: 134-138.
Zhu S C, Chen H H, Wang M M, Guo X M, Lei L, Jin G. Adv. Ind. Eng. Polym. Res., 2019, 2: 77-81.
Zhang L, Ding X D, Hou R C. J. Anal. Methods Chem., 2020, 2020(22): 1-13.
Chen X Y, Chai Q Q, Lin N, Li X H, Wang W. Anal. Methods, 2019, 11(40): 5118-5125.
Ng W, Minasny B, Montazerolghaem M, Padarian J, Ferguson R, Bailey S, McBratney A B. Geoderma, 2019, 352: 251-267.
Lu M Y, Yang K, Song P F, Shu R X, Wang L P, Yang Y Q, Liu H, Li J H, Zhao L L, Zhang Y H. Spectrosc. Spectral Anal.(鲁梦瑶,杨凯,宋鹏飞,束茹欣,王萝萍,杨玉清,刘慧,李军会,赵龙莲,张晔晖.光谱学与光谱分析),2018, 38(12): 3724-3728.
Bakker E J, Rem P C, Fraunholcz N. Waste Manage., 2009, 29(5): 1712-1717.
Kumagai M, Suyama H, Sato T, Amano T, Ogawa N. J. Near Infrared Spectrosc., 2002, 10(4): 247-255.
Rinnan Å, Van Den Berg F, Engelsen S B. Trends Anal. Chem., 2009, 28(10):1201-1222.
Wang H Y, Li J H, Yang F L. Appl. Res. Comput.(汪海燕, 黎建辉, 杨风雷. 计算机应用研究), 2014, 31(5): 1281-1286.
Devos O, Ruckebusch C, Durand A, Duponchel L, Huvenne J P. Chemom. Intell. Lab. Syst., 2009, 96(1): 27-33.
0
浏览量
5
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构