1.中国人民公安大学 侦查学院,北京 102600
2.酒泉卫星发射中心,甘肃 酒泉 735000
王继芬,教授,研究方向:微量物证与毒物毒品分析,E-mail:wangjifen58@126.com
扫 描 看 全 文
卫辰洁,王继芬,曾啸虎.红外光谱数据融合结合化学计量学无损检测汽车灯罩[J].分析测试学报,2021,40(07):1043-1048.
WEI Chen-jie,WANG Ji-fen,ZENG Xiao-hu.Nondestructive Detection of Automobile Lampshades by Infrared Spectrum Data Fusion Combined with Chemometrics[J].Journal of Instrumental Analysis,2021,40(07):1043-1048.
卫辰洁,王继芬,曾啸虎.红外光谱数据融合结合化学计量学无损检测汽车灯罩[J].分析测试学报,2021,40(07):1043-1048. DOI: 10.3969/j.issn.1004-4957.2021.07.010.
WEI Chen-jie,WANG Ji-fen,ZENG Xiao-hu.Nondestructive Detection of Automobile Lampshades by Infrared Spectrum Data Fusion Combined with Chemometrics[J].Journal of Instrumental Analysis,2021,40(07):1043-1048. DOI: 10.3969/j.issn.1004-4957.2021.07.010.
汽车灯罩碎片是交通肇事案件现场经常出现的物证。为了实现对汽车灯罩物证的准确检验,该文提出一种将原始光谱与导数光谱相结合的光谱融合技术。收集不同类别和多种品牌的汽车灯罩共计44个,采用傅里叶变换红外光谱技术对样本进行分析,提取其原始光谱数据和一阶导数光谱数据,并结合化学计量学构建分类模型。在对汽车灯罩类别进行分类的Fisher判别分析模型中,单独的原始光谱数据和一阶导数光谱数据的分类准确率分别为86.40%和84.10%,融合后的光谱数据分类准确率达到93.20%,分类准确率明显提高。通过主成分分析优化模型后,融合光谱的分类准确率达到97.70%,且在进一步对汽车灯罩品牌进行分类时,分类准确率达到100.00%,实验结果理想。而在K近邻算法模型中,由于受到样本不均匀的影响,分类准确率较低。结果表明,基于原始光谱与导数光谱的光谱融合技术能够实现对汽车灯罩样本的准确分类,可以为光谱融合技术在分析检测领域的应用提供借鉴和参考。
The car lampshade fragment is the physical evidence which often appears at the traffic accident case scene. In order to realize the accurate examination on the physical evidence of automobile lampshade, a spectral fusion technique combining the original spectrum and derivative spectrum was proposed. A total of 44 lampshades of different categories and brands were collected. The samples were analyzed by Fourier transform infrared spectroscopy (FTIR) to extract the original spectral data and first-order derivative spectral data, which were used to construct the classification model by combining with chemometrics. In Fisher discriminant analysis model, the classification accuracies for single original spectral data and first-derivative spectral data were 86.40% and 84.10%, respectively, while the classification accuracy for fused spectral data reached up to 93.20%, which was significantly higher than those for original spectral data and first-derivative spectral data. After the model optimization of principal component analysis, the classification accuracy for fusion spectrum reached up to 97.70%. In addition, when further classifying the lamp shade brands, the classification accuracy reached to 100.00%. The result of the experiment was ideal. However, in the K-nearest neighbor algorithm model, the classification accuracy was low due to the influence of uneven samples. Results showed that the spectral fusion technique based on the original spectrum and derivative spectrum could realize the accurate classification of automobile lampshade samples, which could provide a reference for the application of spectral fusion technique in the field of public security.
汽车灯罩傅里叶变换红外光谱光谱融合K近邻算法Fisher判别分析
automobile lampshadeFourier transform infrared spectroscopyspectral fusionK-nearest neighbor algorithmFisher discriminant analysis
Anhui Taino Plastic Co. Ltd.. China Patent(安徽泰诺塑胶有限公司. 中国专利), CN201510016270.6, 2015-05-27.
Jinhua Yingwang Electronics Co. Ltd.. China Patent(金华市鹰王电子有限公司. 中国专利), CN201910692068.3, 2019-12-17.
Wuhu Tianhong Auto Parts Co. Ltd.. China Patent(芜湖天鸿汽车零部件有限公司. 中国专利), CN201611126178.6, 2017-06-09.
Yu J, Wang J F, Sun X L. J. Light Scatt.余静, 王继芬, 孙兴龙. 光散射学报), 2012, (4): 426-430.
Zhang Y C, Yang W M, Jiao Z W, Shi M N,Huang L. Eng. Plast. Appl.(张义成, 杨卫民, 焦志伟, 石美浓, 黄亮. 工程塑料应用), 2019, 47(10): 1-6.
Guan L Y,Wang Z,Qi N, Li X, Wang G H. J. Instrum. Anal.(管丽媛, 王钟, 祁宁, 李辛, 王国和. 分析测试学报),2020, 39(6): 795-799.
Chu X L,Xu Y P,Lu W Z. J. Instrum. Anal.(褚小立, 许育鹏,陆婉珍. 分析测试学报), 2008, 27(6): 619-622.
Na N, Ouyang Q M, Hui M, Ouyang J, Li Y P. Talanta, 2004, 64(4): 1000-1008.
Fernandes J N, Lílha dos Santos M B, Chouin-Carneiro T, Márcio G P, Sikulu-Lord M T. Sci. Adv., 2018, 4(5): eaat0496.
Lu Y F, Zhu Y K, Zhao Y, Xu X Y,Yin J H. J. Light Scatt.(陆燕飞, 朱勇康, 赵远, 徐新宇, 尹建华. 光散射学报),2020, 32(1): 78-83.
Li B B, Wang J, Yang L, Du W J,Ai S J·A H T. J. Food Saf. Qual.(李贝贝, 王瑾, 杨亮, 杜为军, 艾散江·艾海提. 食品安全质量检测学报), 2019, 10(18): 6282-6288.
Du J, Song Y G, Wang B, Wu J, Zha S S, Liu G Y, Wu J H. Environ. Chem.(杜静, 宋永刚, 王彬, 吴景, 查珊珊, 刘桂英,吴金浩.环境化学), 2018, 37(6): 1440-1443.
Chen X W, Yin G F, Zhao N J, Gan T T,Yang R F,Zhu W, Liu J G,Liu W Q. Spectrosc. Spectral Anal.(陈晓伟,殷高方, 赵南京, 甘婷婷, 杨瑞芳, 祝玮, 刘建国, 刘文清. 光谱学与光谱分析), 2019, 39(9): 2912-2916.
Shao J Q, Tang J C, Xu Y X, Zhang F. J. Capital Med.Univ.(邵建群, 唐静成, 徐艳霞, 张枫. 首都医科大学学报),2018, 39(5): 710-714.
Yao Y Q, Wang L P, Liu Y. World Notes Antibiot.(姚永青,王立萍,刘英.国外医药(抗生素分册)), 2019, 40(1): 69-74.
He X L, Wang J F, Wang F, Lan X K, Luo X. China Meas. Test. Technol.(何欣龙, 王继芬, 王飞, 兰薪康, 罗鑫. 中国测试), 2019, 45(9): 60-64, 83.
Zhao Y, Wang X J, Ma X, Guan Y S, Cui M X, Hu X. Phys. Test. Chem. Anal.: Chem. Anal.(赵云, 王小军, 马骁, 关云山, 崔明鑫, 胡鑫. 理化检验-化学分册), 2019, 55(10):1202-1207.
Michael E S, Mary R W. Forensic Sci. Int., 2016, 264: 113-121.
Pereira R K, Tristão do Carmo Rocha J, Tavares Rodrigues R R, Oliveira Lovatti B P, Castro E V R,Roberto Filgueiras P. Anal. Lett., 2019, 52(18): 1-17.
Yang L,Huang J H, Chen X N, Lü H S,Wang L Q, Su B M. J. Instrum. Anal.(杨璐, 黄建华, 陈欣楠, 吕竑树, 王丽琴,苏伯民. 分析测试学报), 2020, 39(7): 844-850.
He X L, Liu W H, Wang J F. J. Light Scatt.(何欣龙, 刘文浩, 王继芬. 光散射学报), 2018, 30 (1): 70-76.
He X L, Chen L B, Wang J F, Sang G T. Laser Optoelectron. Prog.(何欣龙, 陈利波, 王继芬, 桑国通. 激光与光电子学进展), 2018, 55(5): 409-413.
0
浏览量
4
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构