1.云南民族大学 化学与环境学院,云南省教育厅环境功能材料重点实验室,云南 昆明 650504
2.迪肯大学 生命与环境科学学院,澳大利亚维多利亚州 吉朗 3217
张艳丽,博士,教授,研究方向:电化学传感分析,E-mail:ylzhang@ymu.edu.cn
庞鹏飞,博士,教授,研究方向:化学与生物传感,E-mail:pfpang@aliyun.com
扫 描 看 全 文
张慧莲,苏爱雯,吴永菊等.基于纳米生物条形码和杂交链式反应构建电化学生物传感器用于蛋白激酶活性分析[J].分析测试学报,2023,42(11):1452-1460.
ZHANG Hui-lian,SU Ai-wen,WU Yong-ju,et al.An Electrochemical Biosensor for Detection of Protein Kinase Activity Based on Nanoparticle-based Bio-barcode and Hybridication Chain Reaction Amplification Strategy[J].Journal of Instrumental Analysis,2023,42(11):1452-1460.
张慧莲,苏爱雯,吴永菊等.基于纳米生物条形码和杂交链式反应构建电化学生物传感器用于蛋白激酶活性分析[J].分析测试学报,2023,42(11):1452-1460. DOI: 10.19969/j.fxcsxb.23053103.
ZHANG Hui-lian,SU Ai-wen,WU Yong-ju,et al.An Electrochemical Biosensor for Detection of Protein Kinase Activity Based on Nanoparticle-based Bio-barcode and Hybridication Chain Reaction Amplification Strategy[J].Journal of Instrumental Analysis,2023,42(11):1452-1460. DOI: 10.19969/j.fxcsxb.23053103.
该文结合纳米生物条形码和杂交链式反应(HCR)双重信号放大策略构建了一种电化学生物传感器用于蛋白激酶A(PKA)的活性分析。以MoS,2,/AuNPs纳米复合材料作为玻碳电极修饰材料,半胱氨酸修饰的底物肽链通过Au-S键自组装到修饰电极表面。当存在目标物PKA时,底物肽链被磷酸化,可与纳米生物条形码(S1-AuNPs-Ab)特异性结合,以S1-AuNPs-Ab探针中S1链作为引发链,可诱导发夹DNA(H1和H2)发生杂交链式反应。HCR产物吸附亚甲基蓝(MB)电活性分子,产生放大的电化学响应信号,实现对PKA活性的定量分析。该电化学传感器检测PKA的线性范围为10,-3,~20 U/mL,检出限(,S,/,N,=3)为3×10,-4, U/mL。构建的电化学传感器具有良好的选择性、重现性和稳定性,可用于实际样品细胞裂解液中PKA的活性测定和蛋白激酶抑制剂的筛选及激酶相关药物的发现。
An electrochemical biosensor was developed for the detection of protein kinase A(PKA) activity based on dual signal amplification strategy of nanoparticle-based bio-barcode and hybridization chain reaction(HCR). MoS,2,/AuNPs nanocomposite was used as modified nanomaterial for glassy carbon electrode(GCE). Cysteine-labeled substrate peptide was self-assembled on modified GCE surface by Au-S bonds,which was phosphorylated in the presence of PKA and ATP. Nanoparticle-based bio-barcode of S1-AuNPs-Ab was linked to phosphorylated substrate peptide through specific affinity. The initiator strand S1 of S1-AuNPs-Ab probe opened the hairpin DNA(H1 and H2) structures and triggered a cascade of hybridization chain reaction. Methylene blue(MB) molecules were captured on HCR product,resulting in an enhanced electrochemical response signal and achieving quantitative analysis of PKA activity. The response current of electrochemical biosensor is proportional to PKA concentrations in the range of 10,-3,-20 U/mL,with a detection limit(,S,/,N,=3) of 3×10,-4, U/mL. The proposed electrochemical biosensor exhibits good selectivity,reproducibility and stability,and could be applied for PKA activity assay in cell lysates samples,inhibitor screening and discovery of protein kinase related drugs.
蛋白激酶A纳米生物条形码杂交链式反应电化学生物传感器
protein kinase Ananoparticle-based bio-barcodehybridization chain reactionelectrochemical biosensor
Tarrant M K,Cole P A. Annu. Rev. Biochem.,2009,78:797–825.
Nishizuka Y. Nature,1984,308:693–698.
Manning G,Whyte D B,Martinez R,Hunter T,Sudarsanam S. Science,2002,298:1912–1934.
Ardito F,Giuliani M,Perrone D,Troiano G,Lo Muzio L. Int. J. Mol. Med.,2017,40(2):271–280.
Russo G L,Russo M,Ungar P. Biochem. Pharmacol.,2013,86(3):339–350.
Yang D Q,Halaby M J,Li Y,Hibma J C,Burn P. Drug Discov. Today,2011,16(7/8):332–338.
Aggarwal B B,Harikumar K B. Int. J. Biochem. Cell Biol.,2009,41(1):40–59.
Weinmann H,Metternich R. ChemBioChem,2005,6(3):455–459.
Parang K,Till J H,Ablooglu A J,Kohanski R A,Hubbard S R,Cole P A. Nat. Struct. Biol.,2001,8:37–42.
Noble M E M,Endicott J A,Johnson L N. Science,2004,303(5665):1800–1805.
Hastie C J,Mclauchlan H J,Cohen P. Nat. Protoc.,2006,1:968–971.
Kim Y P,Oh E,Oh Y H,Moon D W,Lee T G,Kim H S. Angew. Chem. Int. Ed.,2007,46:6816–6819.
Byrne D P,Vonderach M,Ferries S,Brownridge P J,Eyers C E,Eyers P A. Biochem. J.,2016,473(19):3159–3175.
He S,Kyaw Y M E,Tan E K M,Bekale L,Kang M W C,Kim S S Y,Tan I,Lam K P,Kah J C Y. Anal. Chem.,2018,90:6071–6080.
Liu Z P,Bai J,Liang C X,Wang Y M,Nie H L,Liu X X,Yan H Y. Biosens. Bioelectron.,2022,203:114055.
Feng T T,Yan S Z,Wang Z,Fan X H. Luminescence,2022,37(6):922–929.
Wang M K,Liu Y,Su D D,Chen J Y,Su X G. Sens. Actuators B,2019,290:512–519.
Wang M K,Lin Z H,Liu Q,Jiang S,Liu H,Su X G. Anal. Chim. Acta,2018,1012:66–73.
Zhou J,Xu X H,Liu X,Li H,Nie Z,Qing M,Huang Y,Yao S Z. Biosens. Bioelectron.,2014,53:295–300.
Sun S J,Shen H X,Liu C H,Li Z P. Analyst,2015,140(16):5685–5691.
Sun S J,Zhang L J,Lu X H,Ren W,Liu C H. Chem. Commun.,2021,57(66):8154–8157.
Shen C C,Zhang K N,Gao N X,Wei S J,Liu G M,Chai Y L,Yang M H. Microchim. Acta,2016,183:2933–2939.
Xiao K,Meng L X,Du C C,Zhang Q Q,Yu Q,Zhang X H,Chen J H. Sens. Actuators B,2021,328:129096.
Sun Y,Zhang Y M,Zhang H X,Liu M L,Liu Y. Anal. Chem.,2020,92:10668–10676.
Hu Q,Su L F,Luo Y L,Cao X J,Hu S H,Li S Q,Liang Y Y,Liu S J,Xu W J,Qin D D,Niu L. Anal. Chem.,2022,94:6200–6205.
Cheng W T,Ma J H,Xiang L L,Sun Y,Huang W,Zhang Z L,Kong D H,Li J H. Bioelectrochemistry,2021,140:107796.
Fathi N,Saadati A,Alimohammadi M,Abolhassani H,Sharifi S,Rezaei N,Hasanzadeh M. Microchem. J.,2022,182:107961.
Liao Y,Zhang Y Q,Su A W,Zhang Y L,Wang H B,Yang W R,Pang P F. Talanta,2023,260:124612.
Bakker E,Qin Y. Anal. Chem.,2006,78:3965–3984.
Yin X H,Yang X J,Luo D,Zhang Y L,Wang H B,Yang W R,Pang P F. J. Instrum. Anal.(尹学虎,杨新杰,罗丹,张艳丽,王红斌,杨文荣,庞鹏飞. 分析测试学报),2023,42(3):315–322.
Zhang D,Li Q X,Wang Z M,Liao L F,Xiao X L. J. Instrum. Anal.(张迪,李强翔,王志梅,廖力夫,肖锡林. 分析测试学报),2021,40(8):1136–1144.
Hill H D,Mirkin C A. Nat. Protoc.,2006,1:324–336.
Wang Y S,Jin M J,Chen G,Cui X Y,Zhang Y D,Li M J,Liao Y,Zhang X Y,Qin G X,Yan F Y,Abd El-Aty A M,Wang J. J. Adv. Res.,2019,20:23–32.
Brakmann S. Angew. Chem. Int. Ed.,2004,43(43):5730–5734.
Nam J M,Thaxton C S,Mirkin C A. Science,2003,301(5641):1884–1886.
Tang S S,Gu Y,Lu H T,Dong H F,Zhang K,Dai W H,Meng X D,Yang F,Zhang X J. Anal. Chim. Acta,2018,1004:1–9.
Amini B,Kamali M,Salouti M,Yaghmaei P. Biosens. Bioelectron.,2017,92:679–686.
Beiderman M,Ashkenazy A,Segal E,Barnoy E A,Motiei M,Sadan T,Salomon A,Rahimipour S,Fixler D,Popovtzer R. ACS Appl. Nano Mater.,2020,3:8414–8423.
Kantak M,Batra P,Shende P. Int. J. Biol. Macromol.,2023,230:123262.
Park C R,Park S J,Lee W G,Hwang B H. Biotechnol. Bioproc. E,2018,23:355–370.
Dirks R M,Pierce N A. Proc. Natl. Acad. Sci. USA,2004,101(43):15275–15278.
Wu J T,Lü J R,Zheng X Q,Wu Z S. Talanta,2021,234:122637.
Zhang C Y,Chen J,Sun R,Huang Z J,Luo Z W,Zhou C,Wu M F,Duan Y X,Li Y X. ACS Sens.,2020,5:2977–3000.
Augspurger E E,Rana M,Yigit M V. ACS Sens.,2018,3:878–902.
Bi S,Yue S Z,Zhang S S. Chem. Soc. Rev.,2017,46:4281–4298.
Yuan S,Huo B Y,Zhang M,Wang Y,Bai J L,Peng Y,Ning B A,Chen P,Gao Z X. Chin. J. Anal. Chem.(苑帅,霍冰洋,张曼,王瑜,白家磊,彭媛,宁保安,陈萍,高志贤. 分析化学),2019,47(1):147–154.
Zhang Y L,Chen M,Li H Y,Yan F Q,Pang P F,Wang H B,Wu Z,Yang W R. Sens. Actuators B,2017,244:606–615.
Fang L X,Huang K J,Liu Y. Biosens. Bioelectron.,2015,71:171–178.
Zhu L P,Ye J,Yan M X,Zhu Q J,Wang S,Huang J S,Yang X R. ACS Sens.,2019,4:2778–2785.
Yan Z Y,Li Y S,Wei X X,Li P,Jiang J J,Chen Y J,Duan P F,Wang X Y,Deng P Y,Liu X W. Biosens. Bioelectron.,2022,11:100204.
Wang Y,Li X,Waterhouse G I N,Zhou Y L,Yin H S,Ai S Y. Talanta,2019,196:197-203.
Luo Q X,Li Y,Liang R P,Cao S P,Jin H J,Qiu J D. J. Electroanal. Chem.,2020,856:113706.
Yan Z Y,Wang F,Deng P Y,Wang Y,Cai K,Chen Y H,Wang Z H,Liu Y. Biosens. Bioelectron.,2018,109:132-138.
Wang M K,Wang L,Liu Q,Su X G. Sens. Actuators B,2018,256:691–698.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构