1.中国科学院西北高原生物研究所 青海省青藏高原特色生物资源研究重点实验室,青海 西宁 810008
2.中国科学院西北高原生物研究所 中国科学院藏药研究重点实验室,青海 西宁 810008
3.中国科学院大学,北京 100049
孙 菁,博士,研究员,研究方向:中药质量评价与控制,E-mail:sunj@nwipb.cas.cn
扫 描 看 全 文
龙若兰,冯丹,罗西等.藏药五脉绿绒蒿提取过程的在线近红外光谱质量控制研究[J].分析测试学报,2023,42(08):920-929.
LONG Ruo-lan,FENG Dan,LUO Xi,et al.Online Near Infrared Quality Control on Extraction Process of Tibetan Medicine Meconopsis Quintuplinervia Regel.[J].Journal of Instrumental Analysis,2023,42(08):920-929.
龙若兰,冯丹,罗西等.藏药五脉绿绒蒿提取过程的在线近红外光谱质量控制研究[J].分析测试学报,2023,42(08):920-929. DOI: 10.19969/j.fxcsxb.23050906.
LONG Ruo-lan,FENG Dan,LUO Xi,et al.Online Near Infrared Quality Control on Extraction Process of Tibetan Medicine Meconopsis Quintuplinervia Regel.[J].Journal of Instrumental Analysis,2023,42(08):920-929. DOI: 10.19969/j.fxcsxb.23050906.
利用近红外光谱技术和自建的在线检测系统,实现了藏药五脉绿绒蒿提取过程中总黄酮含量的在线近红外光谱监测和提取终点的判定。以403个样品为建模集,分别获得了主成分回归(PCR)、偏最小二乘(PLS)、决策树(DT)、随机森林(RF)算法下的最佳光谱预处理方法和建模区间,以残差预测偏差(RPD)值为指标选择最佳建模方法。以62个样品为外部验证集,考察模型应用于总黄酮含量实时监测的可行性。此外,还探讨了利用模型预测值进行相对浓度变化率(RCCR)分析直接判定提取终点的可行性,并比较了标准偏差绝对距离法(ADSD)和移动窗口标准偏差法(MBSD)对提取终点判定的适用性。结果表明,在预处理方法为Constant+一阶导数+SG平滑、建模区间5 300 ~ 9 000 cm,-1,条件下所建的总黄酮含量的PLS模型效果最好,其校正集和验证集的误差均方根均小于0.14、相关系数均大于0.97,RPD值为4.68。所建PLS模型对未知样品的平均预测率为79%,实际值与预测值的相关系数大于0.98,表明模型有较好的预测效果。外部验证集中RCCR法判定的预测提取终点和ADSD法判定的提取终点均与实际提取终点一致。所建模型性能较好,通过对未知样品进行准确快速的定量分析,实现了五脉绿绒蒿提取过程中总黄酮含量的实时监测,同时,以RCCR和ADSD作为提取终点的判定方法较为准确,可为藏药材提取过程在线近红外光谱分析技术的研究提供有益借鉴。
A near infrared spectroscopy with self-built online detection system was developed for the online detection of total flavonoids and the end-point determination in the extraction process of ,Meconopsis quintuplinervia, Regel.in this paper.Total 403 samples were used as the modeling set to obtain the best pretreatment methods and modeling bands for principal component regression(PCR),partial least squares(PLS),decision tree(DT),and random forest(RF) algorithms,respectively.And the best modeling method was selected with the ration of prediction to deviation(RPD) value as the index.The feasibility for the assay model applied to real-time monitoring of total flavonoids content was investigated with 62 samples as an external validation set.In addition,the feasibility for direct determination of the extraction end-point by relative concentration changing rate(RCCR) analysis was also investigated using the model prediction values.Futhermore,the suitabilities for the determination of extraction endpoints by the absolute distance of standard deviation(ADSD) and moving block standard deviation(MBSD) method were compared.The results showed that the PLS model constructed under the pretreatment method Constant + first derivative + Savitzky-Golay smoothing and the modeling bands 5 300-9 000 cm,-1, had the best results,which had the root mean squared errors for calibration and validation both less than 0.14,correlation coefficients for calibration and validation both greater than 0.97,and a RPD value of 4.68.The average prediction rate of the constructed PLS model for unknown samples was 79%,the correlation coefficient between the actual and predicted values was greater than 0.98,which meant that the model had a good prediction effect.The prediction extraction end-points determined by both RCCR and ADSD methods in the external validation sets were consistent with the actual end-point of 84 min.It can be seen that the performance of the proposed model was good enough.The real-time monitoring of the total flavonoids content in the extraction process of ,Meconopsis quintuplinervia, Regel.was achieved through the accurate and rapid quantitative analysis of the unknown samples,and the determination methods with RCCR and ADSD as the extraction endpoint were accurate enough.This paper provided a reliable reference for the application of online near infrared spectroscopy in the extraction process of Tibetan herbal medicine.
近红外光谱技术质量控制在线检测五脉绿绒蒿总黄酮
near infrared spectroscopyquality controlonline detectionMeconopsis quintuplinervia Regel.total flavonoids
Liu Q.Application of Near Infrared Spectroscopy to Process Quality Analysis of Traditional Chinese Medicine. Hangzhou:Zhejiang University(刘全.近红外光谱技术在中药生产过程质量分析中的应用研究. 杭州:浙江大学),2004.
Karande A D,Heng P W,Liew C V.Int. J. Pharm.,2010,396(1/2):63-74.
Lee Y C,Zhou G,Ikeda C,Chouzouri G,Howell L.J. Pharm. Sci.,2019,108:1203-1210.
Xue Y L,Sun Q Q,Wang J L,Zhang T T.Chin. J. Mod. Appl. Pharm. (薛云丽,孙启泉,王君莲,张婷婷.中国现代应用药学),2012,29(12):1078-1082.
Long W J,Hu Z K,Wei L N,Chen H Y,Liu T K,Wang S Y,Guan Y T,Yang X L,Yang J,Fu H Y.Spectrochim. Acta A,2022,271:120932.
Lau C C,Chan C O,Chau F T,Mok D K W.J. Chromatogr. A,2009,1212(11):2130-2135.
Wu Y J,Jin Y,Li Y R,Sun D,Liu X S,Chen Y.Vib. Spectrosc.,2012,58:109-118.
Zhou Y F,Zhou L H,Zhang F L,Gao S H,Zhang S N,Ye Z L.J. Chin. Med. Mater. (周雨枫,周立红,张凤莲,高胜寒,章顺楠,叶正良.中药材),2019,42(10):2367-2370.
Yang Y,Yang L C,Ji X L,Li Y H,Xu Q R,Tong H B.J. Instrum. Anal. (杨越,杨留长,纪晓亮,李易航,徐倩茹,佟海滨.分析测试学报),2020,39(11):1311-1319.
Liu W,He Y,Wu B,Jiang K L.J. Instrum. Anal. (刘伟,何勇,吴斌,蒋轲磊.分析测试学报),2020,39(10):1239-1246.
Liu X S,Li M R,Wang Z Y,Tao L Y,Gu Z X, Wu Y J.Chin. Tradit. Herb. Drugs(刘雪松,李梦茹,王致远,陶玲艳,谷陟欣,吴永江.中草药),2016,47(22):3997-4002.
Mark J,Karner M,Andre M,Rueland J,Huck C W.Anal. Chem.,2010,82(10):4209-4215.
Barla V S,Kumar R,Nalluri V R,Gandhi R R,Venkatesh K.J. Near Infrared Spectrosc.,2014,23(3):221-228.
Yang C,Xu B,Zhang Z Q,Wang X,Shi X Y,Fu J,Qiao Y J.China J. Chin. Mater. Med. 杨婵,徐冰,张志强,王馨,史新元,付静,乔延江.中国中药杂志),2016,41(19):3557-3562.
Huang X G.Towards a Group Standard for the Intelligent Detection of Mixing Uniformity and Moisture in Chinese Medicine Manufacturing Near Infrared. Beijing:Beijing University of Traditional Chinese Medicine(黄兴国.朝向团体标准的中药制造混合均匀度与水分近红外智能检测研究. 北京:北京中医药大学),2020.
Chen J C,Zhang Q,Wang R H,Yang Y,Wang Y,Liu X,Zhang X M,Qiao X F,Zhong G Y,Wei J P.J. Ethnopharmacol.,2023,308:116230.
Guo M,Zhang Y,Wang Z W,Zhao J G.J. Gansu Univ. Chin. Med. (郭玫,张扬,王志旺,赵建刚.甘肃中医学院学报),2010,27(2):31-32.
Wang Z W,Cheng X L,Guo M,Wang R Q,Shao J,Ren Y.Immunol. J. (王志旺,程小丽,郭玫,王瑞琼,邵晶,任远.免疫学杂志),2013,29(2):135-139.
Xie M,Pu Z,Gao L Y,Yuan R Y,Zhuoma D Z,Dikye T,Huang S,Li B.Pak. J. Pharm. Sci.,2023,36(1):71-80.
Gong Y,Zhou H Z,Chen H L.J. Chin. Med. Mater. (龚宇,周蕙祯,陈胡兰.中药材),2020,43(3):758-763.
Li P P,Luan Z J,Li D,Meng X P,Sun J.Chin. J. Anal. Lab. (李佩佩,栾真杰,李朵,孟晓萍,孙菁.分析试验室),2020,39(5):550-555.
Li D,Li P P,Luan Z J,Meng X P,Sun J.Nat. Prod. Res. Dev. (李朵,李佩佩,栾真杰,孟晓萍,孙菁.天然产物研究与开发),2020,32(5):805-812.
Karmen R K,Jure Z,Nineta M.Chemom. Intell. Lab. Syst.,2003,65(2):221-229.
Gao L L,Zhong L,Wei Y H,Nie L,Li L,Dong H L,Zhang H,Dong Q,Zang H C.Chemom. Intell. Lab. Syst.,2022,230:104668.
Feng Y L.Water Spectromics Analysis of Total Flavonoids and Bioactive Components Based on Near-infrared Spectroscopy. Kashgar:Kashgar University (冯昱龙.基于近红外光谱探究总黄酮及生物活性成分的水光谱组学分析. 喀什:喀什大学),2022.
Czarnik-Matusewicz B,Pilorz S.Vib. Spectrosc.,2006,40(2):235-245.
Wojtkow D,Czarnecki M A.J. Phys. Chem.,2005,109(36):8218-8224.
Liu W L,Yan Y Y,Wu D H,Teng M P,He S H.Food Ind. (刘文丽,严虞虞,吴东慧,滕明攀,何诗慧.食品工业),2019,40(1):205-209.
Qiu J,Arnold M A,Murhammer D W.J. Biotechnol.,2014,173:106-111.
Fu L T,Li P,Gao L.Chin. J. Sci. Instrum. (付乐天,李鹏,高莲.仪器仪表学报),2021,42(6):179-190.
Wu C Y.Study and Application of Critical Technologies for Fast Quality Control System Construction During the Manufacturing Processes of Two Characteristic Traditional Chinese Medicine. Hangzhou:Zhejiang University(吴春艳.两种中药特色大品种生产过程快速质控体系构建的关键技术研究及应用. 杭州:浙江大学),2017.
Zou X B,Zhao J W,Povey M J W,Holmes M,Mao H P.Anal. Chim. Acta,2010,667(1/2):14-32.
Zhang L,Zhang L M,Li Y,Liu B P,Wang X F,Wang J D.Spectrosc. Spectral Anal. 张琳,张黎明,李燕,刘丙萍,王晓斐,王俊德.光谱学与光谱分析),2005,(10):76-79.
Wold S,Sjostrom M,Eriksson L.Chemom. Intell. Lab. Syst.,2001,58(2):109-130.
Lavoie F B,Muteki K,Gosselin R.Chemom. Intell. Lab. Syst.,2019,184:71-81.
Wang J X.Comp. Program. Skills Maint. (汪靖翔.电脑编程技巧与维护),2022,446(8):54-56,72.
Wang Y Y,Hu W,Hu D W.J. Changchun Norm. Univ. (王媛媛,胡卫,胡殿文.长春师范大学学报),2020,39(12):94-99.
Ma H L,Xu C Y,Yang X M.World Chin. Med. (马红丽,徐长英,杨新鸣.世界中医药),2021,16(17):2648-2651,2656.
Song J.J. Korean. Stat. Soc.,2015,44(2):321-326.
Malavolti M,Mussi C,Poli M,Fantuzzi A L,Salvioli G,Battistini N,Bedogni G.Ann. Hum. Biol.,2003,30:380-391.
Rossel V.J. Near Infrared Spectrosc.,2007,15:39-47.
Farifteh J,Van der Meer F D,Atzberger C,Carranza E J M.Remote Sens. Environ.,2007,110:59-78.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构