河南工业大学 化学化工学院,河南 郑州 450001
向国强,博士,教授,研究方向:荧光传感分析,E-mail: xianggq@126.com
扫 描 看 全 文
李俊丽,何梦瑶,闫新雨等.高荧光量子产率硼掺杂碳点的制备及其对水中2,4,6-三硝基苯酚的测定[J].分析测试学报,2023,42(09):1127-1133.
LI Jun-li,HE Meng-yao,YAN Xin-yu,et al.Preparation of Boron-doped Carbon Dots with High Fluorescence Quantum Yield and Its Application for Determination of 2,4,6-Trinitrophenol in Water[J].Journal of Instrumental Analysis,2023,42(09):1127-1133.
李俊丽,何梦瑶,闫新雨等.高荧光量子产率硼掺杂碳点的制备及其对水中2,4,6-三硝基苯酚的测定[J].分析测试学报,2023,42(09):1127-1133. DOI: 10.19969/j.fxcsxb.23042801.
LI Jun-li,HE Meng-yao,YAN Xin-yu,et al.Preparation of Boron-doped Carbon Dots with High Fluorescence Quantum Yield and Its Application for Determination of 2,4,6-Trinitrophenol in Water[J].Journal of Instrumental Analysis,2023,42(09):1127-1133. DOI: 10.19969/j.fxcsxb.23042801.
该研究以3-氨基苯硼酸(3-APBA)为原料,通过一步水热法制备了荧光量子产率为51.43%的硼掺杂碳点(B-CDs),该B-CDs呈典型球状,平均粒径为5.8 nm。研究发现所制备的B-CDs的荧光发射峰与2,4,6-三硝基苯酚(TNP)的紫外-可见吸收峰明显重叠,且两者之间存在内滤效应(IFE)。基于IFE机理,以B-CDs为荧光探针建立了TNP的快速分析方法。所建方法在0.5,~,100 μmol/L范围内呈现良好的线性关系,检出限(3,σ,)为86 nmol/L。该分析方法成功应用于环境水样中TNP的测定,实际样品的加标回收率为95.1%~110%,相对标准偏差(RSD)为1.0%~3.9%。基于IFE机理的TNP分析方法具有简便、灵敏、选择性高的特点。
2,4,6-Trinitrophenol(TNP) is a commonly used nitroaromatic explosive. Excessive use will cause serious pollution to soil and groundwater. TNP not only causes a series of environmental problems,but also has many negative effects on the human body. So far,many analytical methods have been applied to the determination of nitroaromatic explosives,such as high performance liquid chromatography(HPLC),mass spectrometry(MS),and electrochemical methods. However,these methods have some drawbacks,such as high cost,complicated sample pretreatment,and expensive instruments. It is of great significance to develop a simple,sensitive and selective method for the detection of TNP. In order to solve this problem,a rapid detection and analysis method of TNP was established based on the inner filter effect(IFE) using B-doped carbon dots(B-CDs) as fluorescent probes. In this study,B-CDs with fluorescence quantum yield of 51.43% were prepared by one-step hydrothermal method using 3-aminophenylboronic acid(3-APBA) as raw material. The morphology and particle size distribution of B-CDs were observed by transmission electron microscopy(TEM). The functional groups on the surface of B-CDs were investigated by FT-IR spectroscopy. The elemental composition and chemical state of B-CDs were studied by X-ray photoelectron spectroscopy(XPS). The optical properties of B-CDs were investigated by fluorescence spectroscopy and ultraviolet-visible absorption spectroscopy. In addition,the effects of pH,salt concentration and temperature on the fluorescence intensity of B-CDs were studied. It was found that the fluorescence emission peak of the prepared B-CDs overlapped with the ultraviolet-visible absorption peak of TNP. According to the fluorescence lifetime results,it was judged that there was an internal filtering effect between the two. The pH 6.0 and room temperature were selected as the optimal experimental conditions. Under the optimal experimental conditions,the fluorescence intensity of B-CDs decreased regularly in the range of 0.5-100 μmol/L TNP concentration. The TNP concentration showed a good linear relationship with the quenching degree lg(,I,0,/,I,),and the linear equation was lg(,I,0,/,I,)= 0.01,c,+0.022 86(,r,2, = 0.999 78). The detection limit was calculated to be 86 nmol/L according to the 3,σ, rule. The method was successfully applied to the determination of TNP in environmental water samples. The spiked recoveries of the actual samples were 95.1%-110%,and the relative standard deviation(RSD) was in the range of 1.0%-3.9%. The TNP analysis method based on IFE mechanism is simple,sensitive and selective.
碳点硼掺杂内滤效应2,4,6-三硝基苯酚水
carbon dotsboron dopinginner filter effect2,4,6-trinitrophenolwater
Wang X,Liu Y L,Zhou Q X,Sheng X Y,Sun Y,Zhou B Y,Zhao J Y,Guo J H. Sci. Total Environ.,2020,720:137680.
Dai S J,Hao X L,Fang Z G,Guo J,Teng Y X. Mater. Sci.-Medzg.,2022,28(1):14-19.
Koc O K,Uzer A,Apak R. ACS Appl. Nano Mater.,2022,5(4):5868-5881.
Wang K,Wang X Y,Liu X Y,Li E S,Zhao R S,Yang S H. J. Mol. Struct.,2022,1263:133167.
Wang D X,Li P X,Li J F,Dong C. Anal. Methods,2020,12(43):5195-5201.
Chen B B,Liu Z X,Zou H Y,Huang C Z. Analyst,2016,141(9):2676-2681.
Ivanova O M,Raks V A,Zaitsev V N. J. Water Chem. Technol.,2014,36(6):273-279.
Sukhanov P T,Kushnir A A,Churilina E V,Maslova N V,Shatalov G V. J. Anal. Chem.,2017,72(4):468-472.
Han Y,Cao H T,Sun H Z,Shan G G,Wu Y,Su Z M,Liao Y. J. Mater. Chem. C,2015,3(10):2341-2349.
Khezri B,Mousavi S M B,Sofer Z,Pumera M. Nanoscale,2019,11(18):8825-8834.
Sun L B,Wu W B,Wang Q Q,Zhang Y C,Ma H Y. J. Instrum. Anal. (孙凌波,武文波,王清清,张越诚,马红艳. 分析测试学报),2022,41(5):710-716.
Sun Z F,Zhao J,Guo P R,Lei Y Q. J. Instrum. Anal. (孙泽飞,赵健,郭鹏然,雷永乾. 分析测试学报),2021,40(12):1736-1743.
Karagianni A,Tsierkezos N G,Prato M,Terrones M,Kordatos K V. Carbon,2023,203:273-310.
Ezati P,Rhim J W,Molaei R,Priyadarshi R,Roy S,Min S,Kim Y H,Lee S G,Han S. Sustain. Mater. Technol.,2022,32:e00397.
Tummala S,Lee C H,Ho Y P. Nanotechnology,2021,32(26):265502.
Karadag S N,Ustun O,Yilmaz A,Yilmaz M. Chem. Phys.,2022,562:111678.
Zhao X X,Dong L X,Ming Y L,Wang M,Lu Z C,Xu Y,Li H R. Talanta,2019,200:9-14.
Shokri R,Amjadi M. J. Photochem. Photobiol. A,2022,425:113694.
Alam A-M,Park B-Y,Ghouri Z K,Park M,Kim H-Y. Green Chem.,2015,17(7):3791-3797.
Salman B I,Hassan A I,Hassan Y F,Saraya R E. BMC Chem.,2022,16(1):58.
Phang S J,Lee J,Wong V-L,Tan L-L,Chai S-P. Environ. Sci. Pollut. Res.,2022,29:41272-41292.
Tian T,He Y,Ge Y L,Song G W. Sens. Actuators B,2017,240:1265-1271.
Yan Z H,Yao W,Mai K,Huang J Q,Wan Y T,Huang L,Cai B,Liu Y. RSC Adv.,2022,12(13):8202-8210.
Wang Y F,Li L,Jiang M,Yang X,Yu X,Xu L. Appl. Surf. Sci.,2022,573:151457.
Wang C J,Sun Q,Li C X,Tang D B,Shi H X,Liu E Z,Guo P Q,Xue W M,Fan J. Mater. Res. Bull.,2022,155:111970.
Xu J,Guo Y,Qin L J,Yue X Y,Zhang Q T,Wang L X. Ceram. Int.,2022,49(5):7546-7555.
Khan W U,Qin L Y,Alam A,Zhou P,Peng Y,Wang Y H. Nanoscale,2021,13(7):4301-4307.
Zhang J Y,Lu X M,Lei Y,Hou X D,Wu P. Nanoscale,2017,9:15606-15611.
Chen S,Yu Y L,Wang J H. Anal. Chim. Acta,2018,999:13-26.
Xie Y,Han M J,Xu Y H,Xiong C Y,Wang R,Xia S H. Prog. Chem.(谢勇,韩明杰,徐钰豪,熊晨雨,王日,夏善红. 化学进展),2021,33(8):1450-1460.
Hu Y Y,Guan R T,Zhang S,Fan X Y,Liu W J,Zhang K Y,Shao X D,Li X,Yue Q L. Food Chem.,2022,372:131287.
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构