中国人民公安大学 侦查学院,北京 100038
高树辉,博士,教授,研究方向:刑事图像技术、电子数据检验,E-mail:gaoshuhui@ppsuc.edu.cn
扫 描 看 全 文
张浩,高树辉.基于高光谱技术的现场车漆物证识别模型研究[J].分析测试学报,2023,42(07):817-824.
ZHANG Hao,GAO Shu-hui.Research on Identification Model for Car Paint Material Evidence Based on Hyperspectral Technology[J].Journal of Instrumental Analysis,2023,42(07):817-824.
张浩,高树辉.基于高光谱技术的现场车漆物证识别模型研究[J].分析测试学报,2023,42(07):817-824. DOI: 10.19969/j.fxcsxb.23040403.
ZHANG Hao,GAO Shu-hui.Research on Identification Model for Car Paint Material Evidence Based on Hyperspectral Technology[J].Journal of Instrumental Analysis,2023,42(07):817-824. DOI: 10.19969/j.fxcsxb.23040403.
该文基于光谱检测可无损成像、操作简单的优点,探索了高光谱成像技术结合深度残差收缩网络识别现场车漆物证的方法。以现场常见的白色车漆碎片为研究对象,采集了18种不同车型共54个车漆样本的高光谱图像,对图像进行10 × 10像素融合,形成19 740个像素的反射光谱。结合高光谱数据的特点,建立了针对性的一维深度残差收缩网络(1D-DRSN)识别模型。实验结果表明,该模型在训练集和测试集上的准确率分别为99.5%和98.6%,损失函数值分别下降到0.093和0.106收敛。相比一维卷积神经网络(1D-CNN)模型和支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)3种传统的机器学习方法,该模型的分类效果和精度明显提高。通过对高光谱数据的深度挖掘区分了来自不同品牌或型号的白色车漆样本。该研究解决了实战难题,是现场车身油漆碎片物证检验技术和方法的有力补充。
Vehicle’s paint chips are one of the common physical evidences at the scene of criminal cases and traffic accidents. Identification and recognition of such physical evidences have been an important part of the research of public security technicians as they might contain some important information about the vehicles involved.Traditional instrumental analysis methods are cumbersome and cannot meet the demand for rapid nondestructive testing of physical evidence at the scene.Based on the advantages of nondestructive imaging and simple operation of spectral detection,a hyperspectral imaging technology combined with deep residual shrinkage network was explored to identify on-site car paint evidence,in order to improve detection efficiency and optimize detection means.The hyperspectral images of 54 car paint samples from 18 different car models were collected,and the images were fused with 10 × 10 pixels to form a reflection spectrum of 19 740 pixels.Combined with the characteristics of hyperspectral data,a targeted one-dimensional deep residual shrinkage network(1D-DRSN) recognition model was established in this paper.The results showed that 1D-DRSN model has 99.5% and 98.6% accuracy for the training and test sets,with the loss function values decreasing to 0.093 and 0.106,respectively.1D-DRSN was significantly better than 1D convolutional neural network(1D-CNN) model and three traditional machine learning methods,including support vector machine(SVM),random forest(RF) and logistic regression(LR).The white car paint samples from different brands or models are distinguished by deep mining of hyperspectral data.This study was applied to solving the practical challenges,and it will be a powerful complement to the existing techniques and methods in the detection and classification of vehicle’s paint fragments from the scene.
高光谱成像技术深度残差收缩网络机器学习现场车漆物证智能识别
hyperspectral imaging techniquedeep residual shrinkage networkmachine learningcar paint evidence from the sceneintelligent identification
Plage B,Berg A D,Luhn S.Forensic Sci. Int.,2008,177(2/3):146-152.
Kwofie F,Perera N U D,Dahal K S,Affadu-Danful G P,Nishikida K,Lavine B K.Appl. Spectrosc.,2022,76(1):118-131.
Merk V,Werncke W,Pfeifer L.Analyst,2022,147(23):5470-5476..
Sun W,Chen R L,Luo J X.Adv. Laser Optoelectron. (孙威,陈蕊丽,骆建新.激光与光电子学进展),2021,58(6):84-93.
Stam B,van Gemert M J,van Leeuwen T G,Teeuw A H,van der Wal A C,Aalders M C.J. Biophotonics,2011,4(10):759-767.
Wang S Y,Yang Y Z,He W W.J. Instrum. Anal. (王书越,杨玉柱,何伟文.分析测试学报),2021,40(10):1489-1496.
Payne G,Wallace C,Reedy B,Lennard C,Schuler R,Exline D,Roux C.Talanta,2005,67(2):334-344.
Ferreira K B,Oliveira A G G,Gonçalves A S,Gomes J A.Forensic Chem.,2017,5:46-52.
Huang J D,He H Y,Lv R,Zhang G T,Zhou Z X,Wang X Y.Anal. Chim. Acta,2022,1224:340238.
He K M,Zhang X Y,Ren S Q,Sun J.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
Zhao M H,Zhong S H,Fu X Y,Tang B P,Pecht M.IEEE Trans. Ind. Inf.,2019,16(7):4681-4690.
Nishiwaki Y,Watanabe S,Shimoda O,Saito Y.Forensic Sci.,2009,54(3):564-570.
LeCun Y,Bengio Y,Hinton G.Nature,2015,521(7553):436-444.
Zhang X L.Convolutional Neural Network Spectral Analysis Method and Its Application in the Quality Detection of Agricultural Products. Hangzhou:Zhejiang University(张晓蕾.卷积神经网络光谱分析方法及其在农产品品质检测中的应用. 杭州:浙江大学),2021.
Duan L,Yan T Y,Wang J L,Ye W X.Spectrosc. Spectral Anal. (段龙,鄢天荥,王江丽,叶伟欣.光谱学与光谱分析),2021,41(12):3857-3863.
Wang S Y,He H Y,Lü R L,He W W.J. Forensic Sci.,2022,67(2):550-561.
Krizhevsky A,Sutskever I,Hinton G E.Commun. ACM,2017,60(6):84-90.
Li X X,Yu L Y,Chang D L.IEEE Trans. Veh. Technol.,2019,68(5):4204-4212.
Huang Y.Research on Arrhythmia Classification Algorithm Based on Deep Residual Contraction Network. Nanning:Guangxi University(黄莹.基于深度残差收缩网络的心律失常分类算法研究. 南宁:广西大学),2022.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构