1.中国水产科学研究院东海水产研究所 农业农村部远洋与极地渔业创新重点实验室,上海 200090
2.青岛市疾病预防控制中心,山东 青岛 266033
3.中国水产科学研究院东海水产研究所 农业农村部东海渔业资源开发利用重点实验室,上海 200090
史永富,博士,副研究员,研究方向:食品质量安全与控制,E-mail:xyzmn530@sina.com
扫 描 看 全 文
田良良,曲欣,方长玲等.分散固相法与气相色谱-质谱法相结合测定自来水中的土腥味物质[J].分析测试学报,2023,42(07):882-887.
TIAN Liang-liang,QU Xin,FANG Chang-ling,et al.Determination of Earthy-musty Odorants in Tap Water by Gas Chromatography-Mass Spectrometry with Dispersion Solid-phase[J].Journal of Instrumental Analysis,2023,42(07):882-887.
田良良,曲欣,方长玲等.分散固相法与气相色谱-质谱法相结合测定自来水中的土腥味物质[J].分析测试学报,2023,42(07):882-887. DOI: 10.19969/j.fxcsxb.23032301.
TIAN Liang-liang,QU Xin,FANG Chang-ling,et al.Determination of Earthy-musty Odorants in Tap Water by Gas Chromatography-Mass Spectrometry with Dispersion Solid-phase[J].Journal of Instrumental Analysis,2023,42(07):882-887. DOI: 10.19969/j.fxcsxb.23032301.
建立了正己烷提取、分散固相浓缩、气相色谱-质谱(GC-MS)测定自来水中土腥味物质土臭素(GSM)和2-甲基异冰片(2-MIB)的方法。通过对提取剂体积、分散固相时间、洗脱剂比例的优化,确定了最佳实验条件,即15 mL正己烷进行液液萃取,0.5 g硅胶分散固相吸附7 min,1 mL正己烷-乙酸乙酯(1∶1,体积比)进行洗脱。采用优化的GC-MS色谱条件,在选择离子监测(SIM)模式下进行测定,内标法定量。结果显示,GSM和2-MIB在0.5 ~ 500 ng/mL范围内呈良好线性关系,相关系数(,r,2,)均大于0.999,检出限分别为0.8、0.4 ng/L,定量下限分别为2.5、1.5 ng/L。以自来水为空白基质,在4、8、20 、80、400 ng/L加标水平下,GSM和2-MIB的平均回收率为72.7% ~ 114%,相对标准偏差(RSD)为1.1% ~ 7.8%。该方法操作简便,定量准确,适用于自来水中GSM和2-MIB的测定。
A gas chromatography-mass spectrometry(GC-MS) with dispersive solid-phase extraction was developed for the analysis of earthy-musty odorants,including geosmin(GSM) and 2-methylisoborneol(2-MIB) in tap water.,n,-hexane liquid-liquid extraction(LLE) combined with silica dispersion solid-phase(DSP) was used to isolate the analytes in tap water.The pretreatment conditions including the volume of extractant,time of DSP and eluent ratio were optimized.The optimal experimental conditions were as follows:the samples were extracted with 15 mL ,n,-hexane,then the targets in extract solution were absorbed with 0.5 g silica for 7 min,and finally,1 mL ,n,-hexane/ethyl acetate(1∶1,by volume) was used to elute the compounds.The chromatographic conditions for detection of GSM and 2-MIB were optimized,then the supernatant was determined by GC-MS in selected ion monitoring(SIM) mode,and quantified by the internal standard method.The results showed that there were good linearities for GSM and 2-MIB in the range of 0.5-500 ng/mL,with correlation coefficients(,r,2,) greater than 0.999.The limits of detection(LODs) for GSM and 2-MIB were 0.8 ng/L and 0.4 ng/L,respectively,while the limits of quantitation(LOQs) for GSM and 2-MIB were 2.5 ng/L and 1.5 ng/L,respectively.The average recoveries for GSM and 2-MIB in tap water,at five spiked levels of 4,8,20,80,400 ng/L ranged from 72.7% to 114%,with relative standard deviations(RSDs) of 1.1%-7.8%.The method is simple in operation and accurate in quantification,and it is suitable for the determination of GSM and 2-MIB in tap water.
土臭素(GSM)2-甲基异冰片(2-MIB)正己烷硅胶气相色谱-质谱法(GC-MS)自来水
geosmin(GSM)2-methylisoborneol(2-MIB)hexanesilicagas chromatography-mass spectrometry(GC-MS)tap water
Srinivasan R,Sorial G A.J. Environ. Sci.,2011,23(1):1-13.
Sun D L,Yu J W,Yang M,An W,Zhao Y Y,Lu N,Yuan S G,Zhang D Q.Front. Environ. Sci. Eng.,2014,8(3):411-416.
Suffet I H,Corado A,Chou D,McGuire M J,Butterworth S.AWWA,1996:168-180.
Burgos L,Lehmann M,Simon D,de Andrade H H R,de Abreu B R R,Nabinger D D,Grivicich I,Juliano V B,Dihl R R.Sci. Total Environ.,2014,490:679-685.
Bai X Z,Zhang T,Wang C Y,Zong D L,Li H P,Yang Z G.Environ. Sci. Pollut. Res.,2017,24:2904-2913.
Suffet I H,Khiari D,Bruchet A.Water Sci. Technol.,1999,40(6):1-13.
Alghanmi H A,Alkam F M,Al-taee M M.J. Appl. Phycol.,2018,30:319-328.
Zhang R,Qi F,Liu C,Zhang Y T,Wang Y P,Song Z L,Kumirska J,Sun D Z.Ecotoxicol. Environ. Saf.,2019,181:499-507.
Gerber N N.Water Sci. Technol.,1983,15:115-125.
Ma K,Zhang J N,Zhao M,He Y J.J. Sep. Sci.,2012,35:1494-1501.
Peng S F,Ding Z,Zhao L,Fei J,Xuan Z B,Huang C X,Chen X D.Chromatographia,2014,77:729-735.
Callejón R M,Ubeda C,Ríos-reina R,Morales M L,Troncoso A M.J. Chromatogr. A,2016,1428:72-85.
Ueta I,Mitsumori T,Kawakubo S,Saito Y.Anal. Sci.,2014,30:979-983.
Wang R,Li D,Jin C X,Yang B W.Water Resour. Ind.,2015,11:13-26.
Salemi A,Lacorte S,Bagheri H,Barceló D.J. Chromatogr. A,2006,1136:170-175.
Lian H X,Lin Q,Sun G S.Instrum. Sci. Technol.,2019,47(3):278-291.
Wu D Y,Duirk S E.Chemosphere,2013,91:1495-1501.
Zou P,Wang L,Yang Z G,Lee H W,Li H P.J. Cent. South Univ.,2016,23:59-67.
Kaziur W,Salemi A,Jochmann M A,Schmidt T C.Anal. Bioanal. Chem.,2019,411:2653-2662.
GB/T 32470-2016. Organic Compounds in Drinking Water-Test Methods of Geosmin and 2-Methylisoborneol. National Standards of the People’s Republic of China(生活饮用水臭味物质土臭素和2-甲基异茨醇检验方法. 中华人民共和国国家标准).
Bristow R L,Young I S,Pemberton A,Williams J,Maher S.Trends Anal. Chem.,2019,110:233-248.
Sun W F,Jia R B,Gao B Y.Front. Environ. Sci. Eng.,2012,6(1):66-74.
Kim H,Hong Y M,Sang B I,Sharma V K.Anal. Methods,2015,7:6678-6685.
Wright E,Daurie H,Gagnon G A.Int. J. Environ. Anal. Chem.,2014,94(13):1302-1316.
Cortada C,Vidal L,Canals A.J. Chromatogr. A,2011,1218:17-22.
Lu J,Wills P S,Wilson P C.Front. Environ. Sci. Eng.,2016,10(3):477-481.
Nakamura S,Nakamura N,Ito S.J. Sep. Sci.,2001,24:674-677.
Tian L L,Han F,Fodjo E K,Zhai W L,Huang X Y,Kong C,Shi Y F,Cai Y Q.Int. J. Anal. Chem.,2021,2021:1-8.
Lin T F,Liu C L,Yang F C,Hung H W.Water Res.,2003,37:21-26.
Zhang H X,Ma P K,Shu J N,Yang B,Huang J Y.Anal. Chim. Acta,2018,1035:119-128.
Duan L,Deng J H,Liu L P,Chen M T,Ma Q.Chin. J. Anal. Chem. (段炼,邓嘉辉,刘立鹏,陈梦婷,马乔.分析化学),2019,47(4):527-532.
Chen K,Zhang P,Wang Y,Zheng Z J,Dong J L,Sun L P,Zhu S Y,Zhao X E.J. Instrum. Anal. 陈坤,张鹏,王妍,郑振佳,董京磊,孙鲁平,朱树芸,赵先恩.分析测试学报),2020,39(3):301-307.
Migliorini F L,Teodoro K B R,Dos Santos D M,Fonseca F J,Mattoso L H C,Correa D S.Polym. Adv. Technol.,2020,31:2075-2082.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构