1.山西医科大学 医学影像学院,山西 太原 030001
2.山西医科大学 基础医学院,山西 太原 030001
马素芳,博士,讲师,研究方向:小分子荧光探针的构建及应用,E-mail:masufang@sxmu.edu.cn
扫 描 看 全 文
余强,李祥,马素芳.吲哚结构的荧光探针在粘度检测及细胞成像中的应用[J].分析测试学报,2023,42(09):1151-1156.
YU Qiang,LI Xiang,MA Su-fang.Application of Fluorescence Probe Based on Indole in Viscosity Detection and Cell Imaging[J].Journal of Instrumental Analysis,2023,42(09):1151-1156.
余强,李祥,马素芳.吲哚结构的荧光探针在粘度检测及细胞成像中的应用[J].分析测试学报,2023,42(09):1151-1156. DOI: 10.19969/j.fxcsxb.23032102.
YU Qiang,LI Xiang,MA Su-fang.Application of Fluorescence Probe Based on Indole in Viscosity Detection and Cell Imaging[J].Journal of Instrumental Analysis,2023,42(09):1151-1156. DOI: 10.19969/j.fxcsxb.23032102.
该文以1,2,3,3-四甲基-3H-吲哚鎓碘化物为电子受体,吲哚为电子供体,通过一步反应合成了一种D-π-A结构的新型荧光探针(,1,),并用于药物诱导的细胞中粘度变化的检测。采用核磁氢谱(,1,H NMR)、核磁碳谱(,13,C NMR)、高分辨质谱(ESI-MS)和红外光谱(IR)对探针进行表征,通过荧光光谱考察了探针光学性质及响应粘度(,η,)的可行性。在不同比例(g∶g)水-甘油体系中,探针的荧光强度(,I,)随着甘油比例的增大逐渐增强,当甘油比例为90%时,探针荧光强度约增强100倍。Förster-Hoffmann方程分析结果显示,lg,I,与lg,η,具有较好的线性关系(,r,2, = 0.998 0),探针对粘度的检出限为1.167 cP。同时该探针对粘度具有较好的选择特异性、光稳定性和pH值稳定性。将探针与经鱼藤酮或羰基氰化氯苯腙(CCCP)刺激的HeLa细胞共孵育30 min,细胞荧光亮度明显增强,表明探针具有较好的生物相容性,可以对细胞微环境中粘度的变化进行有效响应。所制备的探针具有稳定性好、特异性强、生物相容性好的优点,具有一定的生物应用潜质。
In this paper,a novel fluorescent probe with D-π-A structure(,1,) was synthesized by a one-step reaction using 1,2,3,3-tetramethyl-3H-indolium iodide as an electron acceptor and indole as an electron donor for the detection of drug-induced viscosity changes in cells. The structure of the fluorescent probe was characterized by nuclear magnetic hydrogen spectroscopy(,1,H NMR),nuclear magnetic carbon spectroscopy(,13,C NMR) and electrospray ionization mass spectrometry(ESI-MS). The optical properties of the probe and the feasibility of response viscosity(,η,) were measured by fluorescence spectroscopy. The probe was added to different ratios of water-glycerol system,the fluorescence intensity(,I,) of probe increased gradually with the increasing ratio of glycerol. When the ratio of glycerol was 90%,the fluorescence intensity of the probe was enhanced by about 100 times compared with the pure water system. The analysis using the Förster-Hoffmann equation showed a good linear relationship between lg,I, and lg,η,(,r,2, = 0.998 0),and the lowest detection limit of the probe for viscosity was 1.167 cP,indicating the probe has good sensitivity to viscosity response and has the potential for quantitative viscosity detection. The probe did not respond to other active molecules,and the fluorescence intensity was little affected by organic solvents with small viscosity,and only had a better response to glycerol with large viscosity,which fully indicates that the probe degree has an excellent specificity to viscosity. The fluorescence of the probe both in the aqueous solution and the water-glycerol(90%) solution did not change significantly after 60 min keeping at room temperature. The fluorescence intensities of the probe both in aqueous solution and the water-glycerol(90%) solution were almost unchanged in the pH range of 4.0-9.0,which indicated that the probe has good photostability and pH stability. The probe had a low effect on cell viability within the experimental range,indicating that the probe has good biocompatibility. In addition,only weak fluorescence was observed after HeLa cells were co-incubated with the probe solution for 30 min. In contrast,after the probe solution was co-incubated with HeLa cells which were stimulated with rotenone and carbonyl cyanide chlorophenylhydrazone(CCCP) for 30 min,a significant increase in cell fluorescence brightness could be observed,indicating that the probe can effectively detect changes in viscosity in the cell microenvironment. All the above results indicate that the probe has the advantages of good stability,specificity and biocompatibility as a viscosity-responsive probe,and has excellent potential for biological applications.
粘度响应吲哚荧光探针细胞成像
viscosity responseindolefluorescent probecell imaging
Cheng J,Li Z H,Lin W Y. Spectrochim. Acta A,2021,258:119808.
Zhang S Q,Zhang H,Zhao L H,Xu L L,Ma P Y,Ren P,Song D Q. Spectrochim. Acta A,2023,284:121799.
Xie D C,Ma W C,Wang C,Zhang W P,Ding Z Y. Chem. Commun.,2023,59(8):1030-1033.
Wu X,Fu G Y,Li Y,Li S J,Zhao Q Y,Kong F P,Li L,Tang B. Anal. Chem.,2023,95(6):3544-3549.
Silswal A,Koner A L. Chem. Commun.,2023,59(13):1769-1772.
Li Y Q,Zhou Z L,Chen S Y,Pang X,Wu C Y,Li H T,Zhang Y Y. Anal. Chim. Acta,2023,1250:340967.
Dai L X,Ren M G,Lin W Y. Spectrochim. Acta A,2021,254:119627.
Chao J J,Zhang H,Wang Z Q,Liu Q R,Mao G J,Chen D H,Li Y C. Anal. Chim. Acta,2023,1242:340813.
Tang J X. Rev. Sci. Instrum.,2016,87(5):054301.
Zhang Y L,Huang M M,Kan Y,Liu L Y,Dai X P,Zheng G L,Zhang Z D. Polym. Test.,2018,70:144-150.
Zeng W,Fu H. Phys. Fluids,2020,32(4):042002.
Zhang M T,Wu L,Du J Y. J. Instrum. Anal. (张梦田,吴丽,杜江燕. 分析测试学报),2022,41(8):1163- 1169.
Wang Q,Li C,Zhang Z X. J. Instrum. Anal.(王琪,李超,张召香. 分析测试学报),2021,40(8):1197-1202.
Wang T T,Ren M J,Wu F H,Ye M F,Ye J J,Zha X W. J. Instrum. Anal.(王婷婷,任美娟,吴芳辉,叶明富,叶晶晶,查习文. 分析测试学报),2021,41(8):1170 -1177.
Jiao S,Yang S,Wang Y Y,Ma A. Sens. Actuators B,2023,374:132790.
Yang J,Wang Z Y,Ge J Y,Deng Y,Ding F Y,Hu L,Wang H. J. Mol. Struct.,2023,1277:134847.
Huang W,Feng S Y,Liu J,Liang B S,Zhou Y,Yu M Y,Liang J Y,Huang J G,Lü X J,Huang W G. Angew. Chem. Int. Ed. Engl.,2023,135(9):e202219337.
Xiao H B,Li P,Tang B. Chem. Eur. J.,2021,27(23):6880-6898.
Shi W J,Wei Y F,Yang J R,Li H Z,Wan Q H,Wang Y X,Leng H X,Chen K,Yan J W. Sens. Actuators B,2022,359:131594.
Yang G G,Hu X J,Liu W,Xu X. Sens. Actuators B,2022,370:132403.
Fan L,Zan Q,Wang X D,Yu X,Wang S H,Zhang Y W,Yang Q Q,Lu W J,Shuang S M,Dong C. Chem. Eng. J.,2022,449:137762.
Yang Y Z,He L W,Lin W Y. J. Photochem. Photobiol. A,2020,401:112789.
Ren M G,Zhou K,Wang L,Liu K Y,Lin W Y. Sens. Actuators B,2018,262:452-459.
Zhang W,Li M M,Wang X,Zhang W,Wang H,Li P,Tang B. Anal. Chem.,2023,95(4):2382-2389.
Zhang X Y,Yan H M,Huo F J,Chao J B,Yin C X. Sens. Actuators B,2021,344:130244.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构