1.长沙理工大学 食品科学与生物工程学院,湖南 长沙 410114
2.上海海关工业品与原材料检测中心,上海 200135
3.长沙和合医学实验室有限公司,湖南 长沙 410000
丁 利,博士,研究方向:分析化学,E-mail:dingli0824@126.com
扫 描 看 全 文
马琳琳,张泽霖,清江等.氮掺杂碳纳米管增强中空纤维液相微萃取-高效液相色谱法测定生物样本中溴系阻燃剂[J].分析测试学报,2023,42(09):1104-1111.
MA Lin-lin,ZHANG Ze-lin,QING Jiang,et al.Determination of Brominated Flame Retardants in Biological Samples by Nitrogen Doped Carbon Nanotubes Reinforced Hollow Fibers Liquid-phase Microextraction Coupled with High Performance Liquid Chromatography[J].Journal of Instrumental Analysis,2023,42(09):1104-1111.
马琳琳,张泽霖,清江等.氮掺杂碳纳米管增强中空纤维液相微萃取-高效液相色谱法测定生物样本中溴系阻燃剂[J].分析测试学报,2023,42(09):1104-1111. DOI: 10.19969/j.fxcsxb.23031901.
MA Lin-lin,ZHANG Ze-lin,QING Jiang,et al.Determination of Brominated Flame Retardants in Biological Samples by Nitrogen Doped Carbon Nanotubes Reinforced Hollow Fibers Liquid-phase Microextraction Coupled with High Performance Liquid Chromatography[J].Journal of Instrumental Analysis,2023,42(09):1104-1111. DOI: 10.19969/j.fxcsxb.23031901.
该文建立了氮掺杂碳纳米管(N-CNTs)增强中空纤维液相微萃取(HF-LPME)结合高效液相色谱(HPLC)同时检测生物样品中四溴双酚A(TBBPA)和十溴二苯醚(BDE209)的分析方法。分别以15 μL甲苯-正辛醇(1∶1,体积比)和甲苯-乙酸乙酯(1∶1,体积比)有机溶剂对血清和尿样在常温下萃取10 min,在萃取过程中,中空纤维膜排阻样品中蛋白质,避免了大分子物质的干扰。目标化合物经 Kjnetex EVO C,18,(2.1 mm × 150 mm,5 μm)色谱柱分离,以水和乙腈为流动相进行梯度洗脱。考察了不同萃取溶剂、提取时间、氮掺杂碳纳米管用量、样品pH值、搅拌速率、NaCl浓度和解吸溶剂种类对目标化合物萃取效率的影响。结果表明,在最佳条件下,TBBPA和BDE209分别在2~200 ng/mL和10~200 ng/mL范围内具有良好的线性关系,相关系数(,r,2,)不小于0.995,检出限分别为0.375 ng/mL和2.8 ng/mL,定量下限分别为9.4 ng/mL和1.25 ng/mL。在3个加标水平下,目标分析物的回收率为84.5%~114%,相对标准偏差为1.4%~7.5%。该方法在富集TBBPA和BDE209的同时可去除生物样品中的蛋白质,方法简单、快速、灵敏度高、重复性好、绿色环保,适用于复杂基质中TBBPA和BDE209的检测。
A nitrogen-doped carbon nanotubes(N-CNTs) reinforced hollow fiber liquid-phase microextraction(HF-LPME) combined with high performance liquid chromatography(HPLC) was established for the simultaneous determination of tetrabromobisphenol A(TBBPA) and decabromodiphenyl oxide(BDE209) in biological samples. The serum and urine samples were extracted with 15 μL toluene-,n,-octanol(1∶1,by volume) and toluene-ethyl acetate(1∶1,by volume) at room temperature for 10 min,respectively. During the extraction process,the hollow fiber membrane blocked the interference of macromolecules in the sample,which played a role in purification. The target compounds were separated on a Kjnetex EVO C,18,(2.1 mm×150 mm,5 μm) column by gradient elution,using water and acetonitrile as mobile phases at a flow rate of 0.3 mL/min and a column temperature of 30 ℃. The effects of different extraction solvent type,extraction time,nitrogen-doped carbon nanotubes amount,sample pH value,stirring rate,NaCl concentration and desorption solvent type on extraction efficiencies of the target compound were investigated. External standard method was used for the quantitative analysis. The results showed that under the optimum conditions,the calibration curves were linear in the range of 2-200 ng/mL for TBBPA,and 10-200 ng/mL for BDE209. The correlation coefficients(,r,2,) were not less than 0.995,the detection limits(LODs) and the quantitation limits(LOQs) of the method were in the ranges of 0.375-2.8 ng/mL and 1.25-9.4 ng/mL,respectively. The average recoveries for the two target analytes at three spiked levels ranged from 84.5% to 114%,with relative standard deviations(RSDs) of 1.4%-7.5%. This method could not only enrich TBBPA and BDE209,but also remove protein from biological samples at the same time. The method was sensitive,reproducible,green and environmentally friendly,and was suitable for the detection of TBBPA and BDE209 in complex matrices.
氮掺杂碳纳米管(N-CNTs)中空纤维液相微萃取(HF-LPME)溴系阻燃剂高效液相色谱法(HPLC)
N-doped carbon nanotubes(N-CNTs)hollow fiber liquid-phase microextraction(HF-LPME)brominated flame retardanthigh performance liquid chromatography(HPLC)
Qu G B,Shi J B,Wang T,Fu J J,Li Z N,Wang P,Ruan T,Jiang G B. Environ. Sci. Technol.,2011,45(11):5009-5016.
Chen Y J,Dai P G,Peng L Z,Du C,Liang S J. Adv. Mater. Res.,2014,989:506-510.
He Q,Wang X H,Sun P,Wang Z Y,Wang L S. Aquat. Toxicol.,2015,164:145-154.
Wang X,Wei L,Zhu J B,He B N,Kong B D,Xue Z M,Jin X N,Fu Z W. Chemosphere,2019,236:124413.
Yu Y J,Yu Z L,Chen H B,Han Y J,Xiang M D,Chen X C,Ma R X,Wang Z D. Environ. Pollut.,2019,253:909-917.
Liu A F,Shi J B,Qu G B,Hu L G,Ma Q C,Song M Y,Jing C Y,Jiang G B. Environ. Sci. Technol.,2017,51(10):5434-5444.
Yu Y J,Liu L T ,Chen X C,Xiang M D,Li Z R,Liu Y,Zeng Y,Han Y J,Yu Z L. J. Hazard. Mater.,2021,403:124036.
Soulen B K,Venables B J,Johnston D W,Roberts A P. Mar. Environ. Res.,2018,138:96-101.
Tavoloni T,Stecconi T,Galarini R,Bacchiocchi S,Dörr A J M,Elia A C,Piersanti A. Sci. Total Environ.,2021,758:143585.
Fernandes V C,Freitas M,Pacheco J G,Domingues V F,Delerue-Matos C. Food Chem.,2020,309:125572
Dong S Y,Lou Q,Huang G Q,Guo J J,Wang X H,Huang T L. Anal. Bioanal. Chem.,2018,410(28):7337-7346.
Peng J J,Liu Y,Yu F T,Fan H L,Yue S Y,Fang Y H,Liu X L,Wang C H. J. Chromatogr. A,2022,1685:463590.
Li J,Chen T,Wang Y W,Shi Z X,Zhou X Q,Sun Z W,Wang D J,Wu Y N. J. Sep. Sci.,2017,40(3):709-716.
Xiao Z X,Feng J F,Shi Z X,Li J G,Zhao Y F,Wu Y N. Chin. J. Chromatogr.(肖忠新,封锦芳,施致雄,李敬光,赵云峰,吴永宁. 色谱),2011,29(12):1165-1172.
Zhang S H,Zhang Y X,Ji G X,Xu H Z,Liu J N,Shi L L. Chin. J. Anal. Chem.(张圣虎,张易曦,吉贵祥,徐怀洲,刘济宁,石利利. 分析化学),2016,44(1):19-24.
Zhang Z H,Liu Y F,Peng Y,Wang J,Li Q Z,Zhai C P,Xiao Q,Zheng J G. J. Instrum. Anal. (张子豪,刘莹峰,彭莹,王晶,李全忠,翟翠萍,尚前,郑建国. 分析测试学报),2022,41(10):1536-1541.
Kopp E K,Fromme H,Völkel W. J. Chromatogr.,2012,1241.
Bergant M,Milačič R,Ščančar J. J. Chromatogr. A,2018,1572:112-118.
Hayama T,Yoshida H,Onimaru S,Yonekura S,Kuroki H,Todoroki K,Yamaguchi M. J. Chromatogr. B,2004,809(1):28-36.
Lee J E,Oh H B,Im H,Han S B,Kim K H. J. Chromatogr. A,2020,1623:461170.
Liu Z,Chang G C,Chen J B. J. Tiangong Univ.(刘振,常国仓,陈俊波. 天津工业大学学报),2022,41(6):1-8.
Li Y,Zhao S L,Zhang Y,He P G,Wang Q J. J. Instrum. Anal. (李仪,赵双丽,张炎,何品刚,王清江. 分析测试学报),2018,37(7):790-795.
Sobhi H R,Ghambarian M,Behbahani M,Esrafili A. J. Chromatogr. A,2017,1487:30-35.
Liu L,Zhou X,Wang C,Wu Q H,Wang Z. J. Sep. Sci.,2015,38(4):543-702.
Darvishnejad F,Raoof J B,Ghani M. Anal. Chim. Acta,2020,1140:99-110
Sun M,Tang R X,Wu Q H,Wang C,Wang Z. Food Anal. Methods,2014,7:1097-1102.
Ara K M,Raofie F,Seidi S. Anal. Methods,2015,7(18):7840-7851.
Han X F,Chen J,Shi Y P. Talanta,2018,185:132-140.
Yi L S,Zuo L N,Wei C H,Fu H Y,Qu X L,Zheng S R,Xu Z Y,Guo Y,Li H,Zhu D Q. Sci. Total Environ.,2020,719:137389.
He Y D,Wei Y Q,Sun X J,Zhou G W,Zheng J. Anal. Methods,2018,10(21):2464-2469.
Zhou Q X,Wang Y Q,Xiao J P,Zhan Y L. Ecotoxicol. Environ. Saf.,2019,183(C):109471.
Pirard C,Charlier C. Chemosphere,2018 ,211:915-925.
Martínez-Moral M P,Tena M T. Anal. Bioanal. Chem.,2012,404(2):289-195.
Wang X M,Ji H,Wang F B,Cui X L,Liu Y C,Du X Z,Lu X Q. Microchim. Acta,2021,188(5):161.
Dai Y F,Jiang L B,Huang L,Zhang W Y,Tang L M,Ni L B. Food Ind.(戴意飞,蒋玲波,黄鹂,张薇英,唐雷鸣,倪鲁波. 食品工业),2016,37(6):269-272.
Wang L J,Han W,Lou T T,Ma L L,Xiao Y B,Xu Z,Chen M L,Cheng Y H,Ding L. Anal. Methods,2023,15:343-352.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构