1.苏州科技大学 环境科学与工程学院,江苏 苏州 215009
2.江苏省环境科学与工程重点实验室, 江苏 苏州 215009
3.南京理工大学 泰州科技学院 环境与制药工程学院,江苏 泰州 225300
吴友谊,博士,副教授,研究方向:环境样品前处理技术,E-mail:youyi.wu@yahoo.com
扫 描 看 全 文
于芹,吴友谊,周敏等.基于超声辅助原位生成低共熔溶剂的分散液-液微萃取-悬浮固化结合毛细管电泳测定环境水样中氟喹诺酮[J].分析测试学报,2023,42(06):715-721.
YU Qin,WU You-yi,ZHOU Min,et al.Determination of Fluoroquinolones in Environmental Water Samples by Capillary Electrophoresis with Dispersive Liquid-Liquid Microextraction Based on Ultrasonic-assisted in-situ Formation and Solidification of Floating Deep Eutectic Solvent[J].Journal of Instrumental Analysis,2023,42(06):715-721.
于芹,吴友谊,周敏等.基于超声辅助原位生成低共熔溶剂的分散液-液微萃取-悬浮固化结合毛细管电泳测定环境水样中氟喹诺酮[J].分析测试学报,2023,42(06):715-721. DOI: 10.19969/j.fxcsxb.23020602.
YU Qin,WU You-yi,ZHOU Min,et al.Determination of Fluoroquinolones in Environmental Water Samples by Capillary Electrophoresis with Dispersive Liquid-Liquid Microextraction Based on Ultrasonic-assisted in-situ Formation and Solidification of Floating Deep Eutectic Solvent[J].Journal of Instrumental Analysis,2023,42(06):715-721. DOI: 10.19969/j.fxcsxb.23020602.
基于超声辅助原位生成低共熔溶剂(DES)的分散液-液微萃取-悬浮固化(UA-IF-DLLME-SFDES)并结合大体积样品堆积毛细管电泳,建立了对环境水样中加替沙星、洛美沙星、环丙沙星和氟罗沙星4种氟喹诺酮类药物(FQs)进行萃取和测定的新方法。实验筛选出甲基三辛基溴化铵作为氢键受体(HBA),庚酸为氢键供体(HBD),以原位生成方法制备的DES为萃取剂,并对DES的种类及用量、原位生成条件、盐用量、涡旋时间等影响萃取效率的实验条件进行了优化。结果表明,在最佳实验条件下,4种目标物的检出限(,S,/,N ,= 3)和定量下限(,S,/,N ,= 10)分别为0.6 ~ 5.5 μg/L和2.0 ~ 18.3 μg/L,富集倍数为89 ~ 129,日内和日间相对标准偏差(RSD)分别为3.5% ~ 5.9%和4.5% ~ 7.1%,加标回收率为75.6% ~ 110%。所建立的方法成功应用于实际水样中4种FQs的检测。
Based on ultrasonic-assisted ,in,-,situ, formation and solidification of floating deep eutectic solvent(DES),a novel large volume sample stacking capillary electrophoresis with dispersive liquid-liquid microextraction was developed for the determination of four fluoroquinolones(FQs) including gatifloxacin,lomefloxacin,ciprofloxacin and fleroxacin in water samples.In the experiment,methyltrioctyl ammonium bromide and heptanoic acid were chosen as hydrogen bond acceptor(HBA) and hydrogen bond donor(HBD),respectively.Ultrasonication was employed to assist the, in,-,situ, formation of deep eutectic solvent,and the synthesized DES was acted as extractant.The experimental conditions affecting the extraction effect were optimized in detail,including the type and volume of DES,parameters of ,in,-,situ, formation,consumption of salt,vortex time,etc.Experimental results indicated that,the limits of detection(,S,/,N ,= 3) and the limits of quantitation(,S,/,N ,= 10) of the method for the four analytes were in the ranges of 0.6-5.5 μg/L and 2.0-18.3 μg/L,respectively,with the enrichment factors of 89-129 times.The spiked recoveries ranged from 75.6% to 110%,with the intra-day and inter-day relative standard deviations(RSDs) of 3.5%-5.9% and 4.5%-7.1%,respectively.The developed method was successfully applied to the detection of FQs in real water samples.
低共熔溶剂原位生成分散液-液微萃取氟喹诺酮类抗生素毛细管电泳
deep eutectic solventin-situ formationdispersive liquid-liquid microextractionfluoroquinolonescapillary electrophoresis
Kalunke R M,Grasso G,D’Ovidio R,Dragone R,Frazzoli C.Microchem. J.,2018,136(1):128-132.
Zhao H Y,Wei L,Li H,Zhang M,Cao B,Bian J M,Zhan S Y.Lancet Infect. Dis.,2021,21(6):847-857.
Li X X,Cui C Z,Wang X,Ding Z R,Yan Y N.Chin. J. Environ. Eng. (李香香,崔长征,王雄,丁紫荣,闫雅楠.环境工程学报),2022,16(12):1-9.
Barahona F,Albero B,Tadeo J L,Martín-Esteban A.J. Chromatogr. A,2019,1587(7):42-49.
Yu H,Wang Z H,Wu R,Chen X F,Chan D.J. Chromatogr. A,2019,1601(19):27-34.
Ma W W,Row K H.J. Sep. Sci.,2019,42(3):642-649.
Lu D K,Liu C,Qin M H,Deng J J,Shi G Y,Zhou T S.Anal. Chim. Acta,2020,1133(41):88-98.
Brahmadhi A,Chen M X,Wang S Y,ChoY Y,Yu M C,Lee C H,Tsai I.J. Pharm. Biomed. Anal.,2021,195:113821.
Tian J,Hu J,Yang F,Tang T,Guo J,Qin W D.Food Chem.,2014,157(16):498-503.
Wei D,Zhang J,Guo M.J. Instrum. Anal. (魏丹,张菊,国明.分析测试学报),2022,41(2):187-195.
Di X,Wang X,Liu Y P,Guo X J,Di X.J. Chromatogr. B,2019,1118(12):109-115.
Ma Y J,Bi A Q,Wang X Y,Qin L,Du M,Dong L,Xu X B.Food Chem.,2020,309:125753.
Li K,Jin Y,Jung D,Park K,Kim H,Lee J.J. Chromatogr. A,2020,1614:460730.
Timofeeva I,Stepanova K,Shishov A,Nugbienyo L,Moskvin L,Bulatov A.J. Food Compost. Anal.,2020,93:103589.
Nemati M,Mogaddam M R A,Farazajdeh M A,Tuzen M,Khandaghi J.J. Chromatogr. A,2021,1660:462653.
Tang W Y,Dai Y L,Row K H.Anal. Bioanal. Chem.,2018,410(28):7325-7336.
Ma W W,Row K H.Microchem. J.,2021,160:105642.
Hou L J,Ji Y H,Zhao J,Zhao L S.Microchem. J.,2022,179:107664.
Zhu X M,Zhao C Y,Liu J,Qin F,Xiong Z L,Zhao L S.Anal. Methods,2022,14(43):77-85.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构