1.公安部禁毒情报技术中心,毒品监测管控与禁毒关键技术公安部重点实验室,北京 100193
2.中国药科大学 药学院,江苏 南京 210009
3.国家毒品实验室陕西分中心 陕西省公安厅毒品技术中心,陕西 西安 710115
刘翠梅,博士,副高级,研究方向:毒品和新精神活性物质分析,E-mail:liucuimei8258@163.com
廖 琦,硕士,中级工程师,研究方向:毒品和新精神活性物质分析,E-mail:2017111166@stu.cqmu.edu.cn
扫 描 看 全 文
刘翠梅,宋春辉,贾薇等.低场1H qNMR定量分析缴获毒品中氯胺酮及4种掺杂物[J].分析测试学报,2023,42(06):755-761.
LIU Cui-mei,SONG Chun-hui,JIA Wei,et al.Quantification of Ketamine and Four Kinds of Adulterants in Seized Drugs by Low-field 1H Nuclear Magnetic Resonance Spectroscopy[J].Journal of Instrumental Analysis,2023,42(06):755-761.
刘翠梅,宋春辉,贾薇等.低场1H qNMR定量分析缴获毒品中氯胺酮及4种掺杂物[J].分析测试学报,2023,42(06):755-761. DOI: 10.19969/j.fxcsxb.23013002.
LIU Cui-mei,SONG Chun-hui,JIA Wei,et al.Quantification of Ketamine and Four Kinds of Adulterants in Seized Drugs by Low-field 1H Nuclear Magnetic Resonance Spectroscopy[J].Journal of Instrumental Analysis,2023,42(06):755-761. DOI: 10.19969/j.fxcsxb.23013002.
建立了可同时定量分析缴获毒品中氯胺酮、二甲基砜、磺胺、烟酰胺和非那西丁的低场氢谱核磁共振定量方法(LF-,1,H qNMR),并将其定量能力与高场氢谱核磁共振定量方法(HF-,1,H qNMR)进行了比较。对于LF-,1,H qNMR,氯胺酮和4种掺杂物的日内相对标准偏差(RSD)、日间RSD和定量下限分别为0.50% ~ 2.9%、2.0% ~ 7.4%和0.3 ~ 5 mg/mL;对于HF-,1,H qNMR,氯胺酮和4种掺杂物的日内RSD、日间RSD和定量下限分别为0.40% ~ 1.1%、1.5% ~ 3.9%和0.003 ~ 0.05 mg/mL。采用LF-,1,H qNMR和HF-,1,H qNMR对167份缴获氯胺酮样品进行定量分析,两种方法定量结果的相对误差均小于15%。LF-,1,H qNMR测得氯胺酮、二甲基砜、磺胺、烟酰胺和非那西丁的纯度分别为13.5% ~ 102.6%、1.1% ~ 81.3%、2.6% ~ 83.4%、1.8% ~ 22.7%和3.4% ~ 43.8%;HF-,1,H qNMR测得的纯度分别为13.2% ~ 99.7%、1.0% ~ 78.4%、2.5% ~ 75.9%、1.7% ~ 21.3%和3.0% ~ 43.5%。两种方法均可在不使用标准物质的情况下实现对氯胺酮和掺杂物的同时定量分析。虽然LF-,1,H qNMR法的精密度和灵敏度略低于HF-,1,H qNMR法,但其对复杂基质中多组分同时定量分析的能力较好。LF-,1,H qNMR的仪器购置和日常维护费用远低于HF-,1,H qNMR,未来将在法庭科学实验室中得到更广泛的应用。
A low-field ,1,H quantitative nuclear magnetic resonance(LF-,1,H qNMR) spectroscopy was developed for the simultaneous quantification of ketamine and 4 adulterants,i.e. dimethyl sulfone,sulfanilamide,niacinamide,and phenacetin in this paper.Meanwhile,its quantification ability was compared with that of high-field ,1,H quantitative nuclear magnetic resonance(HF-,1,H qNMR).As for LF-,1,H qNMR,the intra-day relative standard deviations(RSDs),inter-day RSDs,and limit of quantitations(LOQs) for ketamine and 4 adulterants were in the range of 0.50%-2.9%,2.0%-7.4% and 0.3-5 mg/mL,respectively,while for HF-,1,H qNMR,the intra-day RSDs,inter-day RSDs and LOQs were 0.40%-1.1%,1.5%-3.9% and 0.003-0.05 mg/mL,respectively.Both LF-,1,H qNMR and HF-,1,H qNMR were applied to the quantification of 167 seized ketamine samples.The quantitative relative errors of LF-,1,H qNMR and HF-,1,H qNMR for ketamine and adulterants were all lower than 15%.The purity ranges of ketamine,dimethyl sulfone,sulfanilamide,niacinamide,and phenacetin determined by LF-,1,H qNMR were 13.5%-102.6%,1.1%-81.3%,2.6%-83.4%,1.8%-22.7% and 3.4%-43.8%,respectively,while those of ketamine,dimethyl sulfone,sulfanilamide,niacinamide and phenacetin determined by HF-,1,H qNMR were 13.2%-99.7%,1.0%-78.4%,2.5%-75.9%,1.7%-21.3% and 3.0%-43.5%,respectively.Both LF-,1,H qNMR and HF-,1,H qNMR could realize the simultaneous quantitative analysis of ketamine and the adulterants without using reference materials.Although the precision and sensitivity of LF-,1,H qNMR are slightly lower than those of HF-,1,H qNMR,its simultaneous quantification ability toward multi-components in complex matrices is exciting.LF-,1,H qNMR will be more widely used in forensic science laboratories in the future due to its low costs in instrument purchase and daily maintenance.
毒品氯胺酮掺杂物定量分析高场核磁共振低场核磁共振
drugketamineadulterantsquantificationhigh-field nuclear magnetic resonance spectroscopylow-field nuclear magnetic resonance spectroscopy
Morgan C J A,Curran H V.Addiction,2011,107:27-38.
Kohtala S.Pharmacol. Rep.,2021,73:323-345.
United Nations Office on Drug Control(UNODC),World Drug Report 2010. New York:United Nations Publications,2010.
Liu P P,Qiao Y L,Fan Y F,Liu C M,Chen J.Police Technol. (刘培培,乔艳玲,樊颖锋,刘翠梅,陈捷.警察技术),2018,4:83-85.
Fan Y F,Wu J M,Hua Z D,Wang Y M.J. Instrum. Anal. (樊颖锋,吴健美,花镇东,王优美.分析测试学报),2021,40(4):565-570.
Hou W,Zhang L P,Wang J F,Wei C M,Lu L,Zhong L J,Liu H T.J. Instrum. Anal. 侯伟,张蕾萍,王继芬,魏春明,卢亮,仲利静,刘浩田.分析测试学报),2021,40(10):1453-1459.
Li P,Zhao Y,Zhao Y B,Yang H X,Gao L S.Forensic Sci. Technol. (李彭,赵阳,赵彦彪,杨虹贤,高利生.刑事技术),2017,42(4):312.
Santos A D C,Dutra L M,Menezes L R A,Santos M F C,Barison A.TrAC-Trends Anal. Chem.,2018,107:31-42.
Holzgrabe U.Prog. Nucl. Magn. Reson. Spectrosc.,2010,57:229-240.
Liu C M,Jia W,Meng X,Hua Z D.J. Forensic Sci.,2021,66:2156-2166.
Song C H,Jia W,Liu C M,Hua Z D,Meng X,Zhao Y B,Li T,Cai L S,Zhao X.Talanta,2023,255:124257-124266.
Draper S L,McCarney E R.Magn. Reson. Chem.,2023,61(2):106-129.
Hulme M C,Hayatbakhsh A,Brignall R M,Gilbert N,Costello A,Schofield C J,Williamson D C,Kemsley E K,Sutcliffe O B,Mewis R E.Magn. Reson. Chem.,2023,61(2):73-82.
Almeida N S,Benedito L E C,Maldaner A O,Oliveira A L.J. Braz. Chem. Soc.,2018,29(9):1944-1950.
Castaing-Cordier T,Ladroue V,Besacier F.Forensic Sci. Int.,2021,321:110718-110725.
Serrano J N P,Benedito L E C,Souza M P,Maldaner A O,Oliveira A L.Forensic Chem.,2021,21:100282-100302.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构