1.中国科学院合肥物质科学研究院智能机械研究所,安徽 合肥 230031
2.中国科学技术大学研究生院 科学岛分院,安徽 合肥 230026
3.中国科学院深海科学与工程研究所,海南 三亚 572000
陈池来,博士,研究员,研究方向:微质谱、仿生微飞行器,E-mail:chlchen@iim.ac.cn
扫 描 看 全 文
邵磊,王晗,刘昌杰等.水下原位质谱仪快速定量方法研究[J].分析测试学报,2023,42(06):749-754.
SHAO Lei,WANG Han,LIU Chang-jie,et al.Research on Rapid Quantitative Method for Underwater Mass Spectrometer[J].Journal of Instrumental Analysis,2023,42(06):749-754.
邵磊,王晗,刘昌杰等.水下原位质谱仪快速定量方法研究[J].分析测试学报,2023,42(06):749-754. DOI: 10.19969/j.fxcsxb.23011701.
SHAO Lei,WANG Han,LIU Chang-jie,et al.Research on Rapid Quantitative Method for Underwater Mass Spectrometer[J].Journal of Instrumental Analysis,2023,42(06):749-754. DOI: 10.19969/j.fxcsxb.23011701.
水下质谱是用于水中溶解气原位检测的重要手段,其定量标定依赖于制备不同浓度的溶解气,需要耗费大量时间。该文基于物理传输机制的不同,对溶解气过膜过程、管道传输过程以及分析器检测过程进行分解解析,提出了一种将3个过程分开标定的快速定量方法,并进行了实验验证。结果表明,过膜流量与样品分压高度线性,相关系数(,r,)为0.998,使用单组数据测定膜渗透效率与多组数据拟合结果的相对误差为3.9%;水下质谱大气阻器件管道会对过膜流量产生显著影响,不考虑膜后压强的传统模型存在极大误差,而考虑膜后压强的管道传输模型可将误差至少降低85.4%;质谱特征峰峰高与样品流量高度线性,相关系数均大于0.999。在以上结论的基础上,进一步使用鼓泡法制备不同浓度的溶解气对分步定量方法进行验证,得到分步标定结果与气相色谱仪检测结果的最大相对误差为10.9%。该文为时间受限情况下的水下质谱仪快速标定提供了一种新方法。
Underwater mass spectrometry is an important means for in-situ detection of dissolved gas in water.Its quantitative calibration depends on the preparation of different concentrations of dissolved gas,which takes a lot of time.Based on the different physical transport mechanisms,the process of dissolved gas passing through the membrane,pipeline transmission,and analyzer detection was decomposed and analyzed in this paper,then a rapid quantitative method that separates the process of sample passing through the membrane from the mass spectrometry detection process was proposed,and finally an experimental verification was conducted.The results showed that the permeation rate was highly linear with the partial pressure of the sample,with a correlation coefficient(,r,) of 0.998.Meanwhile,the membrane permeation efficiency could be determined by using a single set of data,and the relative error with the fitting results of multiple sets of data is 3.9%.Furthermore,the pipeline has a significant impact on the permeation rate.The traditional model that does not consider the pressure behind the membrane has a large error,but the pipeline transmission model that considers the pressure behind the membrane could reduce the error by at least 85.4%.The peak heights of the characteristic peaks in the mass spectrum are highly linear with the sample flux,and their correlation coefficients are all greater than 0.999.Based on the above conclusions,the step-by-step quantitative method was verified by using the bubbling method to prepare different concentrations of dissolved gas,and the maximum relative error between the calibration results and the gas chromatograph detection results is 10.9%.Therefore,a new method for rapid calibration of underwater mass spectrometers under time-limited conditions is provided.
水下质谱仪原位分析膜进样过程快速定量标定方法
underwater mass spectrometerin situ analysismembrane injection processrapid quantitative calibration method
Fei C J,Zhang Q Y,Wu P L,Fang G Y,Zhu W H,Xu X.J. Electron. Inf. Technol. (费春娇,张群英,吴佩霖,方广有,朱万华,许鑫.电子与信息学报),2018,40(11):2779-2786.
Gao J Q,Lin Z H,Jiang Y,Xu H Y,Dai X H,Huang Z J,Fang X.Chin. J. Anal.Chem. (高佳奇,林子涵,江游,徐赫奕,戴新华,黄泽建,方向.分析化学),2022,50(5):666-679.
Feng F,Zhao B,Luo F,Tian B W.J. Micro/nano Electron. Intell. Manuf. (冯飞,赵斌,罗凡,田博文.微纳电子与智能制造),2020,2(4):65-71.
Wang W G,Huang W,Ruan H W,Xu C T,Yang J C,Li B,Li H Y.J. Instrum. Anal. 王卫国,黄卫,阮慧文,徐楚婷,杨俊超,李斌,李海洋.分析测试学报),2022,41(2):283-289.
Gereit F,Hauptmann P,Matz G,Mellert V,Reuter R.P. Oceanol. Int.,1998,98:55-69.
Chua E J,William S,Short R T,Cardenas-Valencia A M,Fulweiler R W.Front. Mar. Sci.,2016,3:1-24.
Camilli R,Duryea A P.MTS/IEEE Oceans,2007:1-7.
Wankel S D,Germanovich L N,Lilley M D,Genc G,Diperna C J,Bradley A S,Olson E J,Girguis P R.Nat. Geosci.,2011,4(7):461-468.
Gentz T,Schlüter M.Limnol. Oceanogr.:Methods,2012,10(5):317-328.
Wankel S D,Joye S B,Samarkin V A,Shah S R,Friederich G,Melas-Kyriazi J,Girguis P R.Deep Sea Res.,Part Ⅱ,2010,57(21/23):2022-2029.
Kibelka G P G,Short R T,Toler S K,Edkins J E,Byrne R H.Talanta,2004,64(4):961-969.
Bell R J,Short R T,Amerom F H W V,Byrne R H.Environ. Sci. Technol.,2007,41(23):8123-8128.
Johnson R C,Cooks R G,Allen T M,Cisper M E,Hemberger P H.Mass Spectrom.,2000,19(1):1-37.
Lapack M A,Tou J C,Enke C G.Anal. Chem.,1990,62(13):1265-1271.
Da D A.Vacuum Design Handbook. 3rd ed. Beijing:National Defense Industry Press(达道安.真空设计手册.3版.北京:国防工业出版社),2004:122.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构