1.上海海洋大学 食品学院,上海 201306
2.中国水产科学研究院珠江水产研究所,广东 广州 510380
3.农业农村部外来入侵水生生物防控重点实验室,广东 广州 510380
4.广东省水产动物免疫技术重点实验室,广东 广州 510380
尹怡,硕士,研究员,研究方向:水产品质量安全风险评估,E-mail:yin.yi@126.com
扫 描 看 全 文
史晓娜,林嘉薇,尹怡等.Fe@Fe3C-C的制备及对双酚A的高效吸附[J].分析测试学报,2023,42(06):666-673.
SHI Xiao-na,LIN Jia-wei,YIN Yi,et al.Preparation of Fe@Fe3C-C and Its Efficient Adsorption of Bisphenol A[J].Journal of Instrumental Analysis,2023,42(06):666-673.
史晓娜,林嘉薇,尹怡等.Fe@Fe3C-C的制备及对双酚A的高效吸附[J].分析测试学报,2023,42(06):666-673. DOI: 10.19969/j.fxcsxb.23010802.
SHI Xiao-na,LIN Jia-wei,YIN Yi,et al.Preparation of Fe@Fe3C-C and Its Efficient Adsorption of Bisphenol A[J].Journal of Instrumental Analysis,2023,42(06):666-673. DOI: 10.19969/j.fxcsxb.23010802.
该研究制备了铁基金属有机骨架MIL-88B(Fe)衍生磁性多孔碳材料Fe@Fe,3,C-C,并将其用于水中双酚A(BPA)的高效吸附。采用X射线衍射、扫描电镜和比表面积及孔径分析等手段对材料的晶体结构、形貌和比表面积进行表征。结果表明,在高温作用下,MIL-88B(Fe)转化成Fe、Fe,3,C共掺杂碳材料(Fe@Fe,3,C-C)。Fe@Fe,3,C-C呈具有层次的炸裂状薄片结构且表面较为粗糙,比表面积为280.48 m,2,/g,与MIL-88B(Fe)相比增加了17倍。吸附实验表明,与MIL-88B(Fe)相比,高温煅烧(≥ 600 ℃)可以明显提升吸附性能。0.5 g/L的Fe@Fe,3,C-C在10 min内对10 mg/L的BPA去除率高达95%。材料具有较广的pH值适用范围(pH 2.0 ~ 10.0)和较强的抗无机盐离子(100 mmol/L)干扰能力,并能够用于高盐环境下的BPA吸附。拟二级动力学模型符合BPA在Fe@Fe,3,C-C上的吸附动力学曲线,吸附过程符合Langmuir模型。循环实验表明,Fe@Fe,3,C-C易于从水体中回收,且具有良好的可再生性能。上述研究结果表明Fe@Fe,3,C-C对水中BPA的去除具有较大的潜力。通过X射线光电子能谱、Zeta电位等表征探究吸附机理,结果显示Fe@Fe,3,C-C的主要作用机制为微孔填充、静电作用及π-π作用。
A magnetic porous carbon material Fe@Fe,3,C-C was prepared by derivatizing an iron-based metal organic framework MIL-88B(Fe) in this paper,and applied to the efficient adsorption of bisphenol A(BPA) in water.The crystal structure,morphology and surface area of the material were characterized by X-ray diffraction,scanning electron microscopy,surface area and pore size analysis. The results showed that MIL-88B(Fe) was transformed into Fe and Fe,3,C co-doped carbon material(Fe@Fe,3,C-C) under high temperature,which had a layered burst-like sheet structure with rough surface.The specific surface area of Fe@Fe,3,C-C was 280.48 m,2,/g,17 times higher than that of MIL-88B(Fe).The adsorption experiment showed that,compared with MIL-88B(Fe),calcination at high temperature(≥ 600 ℃) could improve the adsorption performance significantly.The removal rate of BPA of 10 mg/L reached 95% within 10 min when the amount of Fe@Fe,3,C-C was 0.5 g/L.The material had a wide range of pH application(pH 2.0-10.0) and a strong ability against ionic interference(100 mmol/L),and was suitable for BPA adsorption in high-salt environment.The pseudo-second-order kinetic model accords with the adsorption kinetics curve for BPA on Fe@Fe,3,C-C,and the adsorption process accords with the Langmuir model.Cyclic experiments showed that Fe@Fe,3,C-C has a good recycling ability and could be easily recovered from water.X-ray photoelectron spectroscopy and zeta potential were used to investigate the adsorption mechanism.The main mechanisms of Fe@Fe,3,C-C were π-π interaction,charge interaction and micropore filling.These results indicated that Fe@Fe,3,C-C has a great application potential in the removal of BPA in water.
MIL-88B(Fe)碳衍生化双酚A吸附
MIL-88B(Fe)carbon derivatizationBPAadsorption
Yin C N,Xie P,Jiao M,Guo B Y,Yu C H.Environ.Chem. (尹承南,谢培,焦萌,郭宝元,于彩虹.环境化学),2021,40(9):2820-2831.
Zhou J B.Environ. Monit. Forewarn. (周静博.环境监控与预警),2021,13(5):124-132.
Zhao X,Qiu W H,Zheng Y,Xiong J Z,Gao C Z,Hu S Y.Ecotoxicol. Environ. Saf.,2019,180:43-52.
Flint S,Markle T,Thompson S,Wallace E.J. Environ. Manage.,2012,104:19-34.
Iwamuro S,Sakakibara M,Terao M,Ozawa A,Kurobe C,Shigeura T,Kato M,Kikuyama S.Gen. Comp. Endocrinol.,2003,133(2):189-198.
Yang N,Chen X R,Lin F K,Huang H,Zhang F,Zhao J,Ding Y.Environ. Sci. 杨娜,陈秀荣,林逢凯,黄华,章斐,赵骏,丁毅.环境科学),2014,35(4):1414-1420.
Fang Z.Preparation of Graphene-based Monolithic Composites and Its Applications in Bisphenol A Removal by Adsorption/Photocatalysis. Guangzhou:South China University of Technology(方铮.石墨烯宏观体复合材料的制备及其对双酚A的吸附/光催化去除研究.广州:华南理工大学),2017.
Hong S H,Sung Y A,Hong Y S,Ha E,Jeong K,Chung H,Lee H.Clin. Endocrinol. (Oxf.),2017,86(4):506-512.
Ullah H,Jahan S,Ain Q U,Shaheen G,Ahsan N.Chemosphere,2016,152:383-391.
Shen J,Liu J C,Lu G H,Dan X X.Asian J. Ecotoxicol. (沈杰,刘建超,陆光华,但孝香.生态毒理学报),2018,13(5):37-48.
Li G Y,Zu L,Wong P K,Hui X P,Lu Y,Xiong J K,An T C.Bioresour. Technol.,2012,114:224-230.
Yuksel S,Kabay N,Yuksel M.J. Hazard. Mater.,2013,263(2):307-310.
Hui S H,Li Y B,Wang Y,Hu R Q,Li X,Liu S Q,Zhu H Y,Zhao X.Environ. Chem. 惠劭华,李一兵,王雁,呼瑞琪,李霞,刘思琦,朱海洋,赵旭.环境化学),2020,39(10):2858-2868.
Guo Y J,Yue C Y,Li J C,Xia W X,Zhao B X.Chin. J. Environ. Eng. (郭雅婧,越楚遥,李金成,夏文香,赵宝秀.环境工程学报),2022,16(9):2817-2827.
Alhokbany N S,Naushad M,Kumar V,Alhatim S,Alshehri S M,Ahamad T J.J. King Saud Univ. Sci.,2020,R32(8):3351-3358.
Wang H W.Adsorption Behavior of Bisphenol A on Different Iron Minerals. Beijing:China University of Geosciences(王慧玮.双酚A在不同铁矿物上的吸附行为研究.北京:中国地质大学),2016.
Zeng R Y,Tang W Q,Feng Y L,Liu M Q,Huang B,Wu A F.Chin. J. Environ. Eng. (曾荣英,唐文清,冯泳兰,刘梦琴,黄波,吴安富.环境工程学报),2013,7(10):3797-3801.
Kong J,Wang X D,Liu T T,Gu H D.J. Instrum. Anal. (孔佳,王学东,刘婷婷,顾海东.分析测试学报),2021,40(3):340-346.
Liu C M.Modification of Clay Mineral and Their Adsorption/Degradation Performance on Cd/Pb and BPA. Guangzhou:South China University of Technology(刘崇敏.改性粘土复合材料对镉/铅-双酚A复合污染的吸附及降解行为研究. 广州:华南理工大学),2018.
Lin J W.Degradation of BPA via Activation of Persulfate by MIL-88B under Visible Light. Guangzhou:South China University of Technology(林嘉薇.MIL-88B可见光催化活化过硫酸盐降解双酚A的研究.广州:华南理工大学),2020.
Mahmad M,Shaharun M S,Noh T U,Zango Z U,Taha M F.Inorg. Chem. Commun.,2022,142:109604.
Rezania S,Cho J,Nejad Z D,Barghi A,Yadav K K,Ahmed E M,Cabral-Pinto M M S,Park J,Mehranzamir K.Colloids Surf. A,2021,626:127039.
Qin F X,Jia S Y,Liu Y,Li H Y,Wu S H.Desalin. Water. Treat.,2015,54:93-102.
Li A Q.Nano-materials Derived from MOFs and Their Catalytic Properties in the Selective Hydrogenation of Phenols. Guangzhou:South China University of Technology(李爱琴.MOFs衍生纳米材料的制备及其催化苯酚选择性加氢研究.广州:华南理工大学),2017.
Zhang B B,Li T F,Huang L Z,Ren Y P,Sun D M,Pang H,Yang J,Xu L,Tang Y W.Nanoscale,2021,13(10):5400-5409.
Yin H Y,Zhu J J,Chen J L,Gong J Y,Nie Q L.Mater. Lett.,2018,221:267-270.
Xiao L L,Xu R Y,Yuan Q H,Wang F.Talanta,2017,167:39-43.
Nisa M U,Chen Y,Li X,Jiang X N,Li Z H.J. Taiwan Inst. Chem. Eng.,2022,131:104170.
Zhou W X,Tang Y J,Zhang X Y,Zhang S T,Xue H G,Pang H.Coord. Chem. Rev.,2023,477:214949.
Xiao H B.Microstructure Characterization and Mechanical Properties of CoCrFeMnNi,MoCrFeMnNi,TiCrFeMnNi High-entropy Alloys Prepared by Aluminothermic Reaction. Lanzhou:Lanzhou University of Technology(肖海波.铝热法制备CoCrFeMnNi、MoCrFeMnNi、TiCrFeMnNi高熵合金及其组织表征和力学性能.兰州:兰州理工大学),2017.
Liu C,Jiang F Z.New Chem. Mater. (刘超,蒋峰芝.化工新型材料),2020,48(12):196-199.
Ye Y C,Sun Y Q,Sa R G R L,Shi L L,Zhang Z,Wang T,Liu Y H.Environ. Chem.叶益辰,孙雨晴,萨仁格日乐,施乐乐,张珍,王涛,刘永红.环境化学),2020,39(1):61-70.
Staples C A,Dom P B,Klecka G M,O’Block S T.Chemosphere,1998,36(10):2149-2173.
Sun Y,Li D W,Wei Q F.Chin. J. Mater. Res. (孙玥,李大伟,魏取福.材料研究学报),2020,34(5):353-360.
Liu P X,Zhang Y F,Yang J,Meng Q,Ma W Q,Ren Y M.Mater. Sci. Technol. (刘坪鑫,张亚菲,杨静,孟倩,马伟青,任月明.材料科学与工艺),2012,20(1):98-102.
Xu J W,Yin M N,Shi L,Zhang H.Environ. Chem. (许珈玮,尹梦楠,石林,张凰.环境化学),2023,42(1):253-263.
Cai N,Larese-Casanova P.J. Colloid Interface Sci.,2014,426:152-161.
Lv Y C,Ma J C,Liu K Y,Jiang Y T,Yang G F,Liu Y F,Lin C X,Ye X X,Shi Y Q,Liu M H,Chen L H.J. Hazard. Mater.,2021,403:123666.
Su Y P,Li S,Jiang G M,Zheng Z Q,Wang C,Zhao S Y,Cui A L,Liu Y,Zhang B P,Zhang Z T.J. Colloid Interface Sci.,2021,581(Pt A):350-361.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构