1.南京中医药大学 药学院,江苏 南京 210023
2.中国中医科学院 中药资源中心 道地药材国家重点实验室培育基地,北京 100700
3.宁夏医科大学 药学院,宁夏 银川 750004
4.中南民族大学 药学院,湖北 武汉 430074
杨 健,博士,副研究员,研究方向:中药资源与鉴定,E-mail:yangchem2012@163.com
扫 描 看 全 文
王巧,于永杰,付海燕等.基于多指标含量测定结合化学计量学的不同产地丹参品质差异分析[J].分析测试学报,2023,42(04):389-401.
WANG Qiao,YU Yong-jie,FU Hai-yan,et al.Quality Difference Analysis of Salviae Miltiorrhizae Radix et Rhizoma from Different Origins Based on Multi-index Content Determination Combined with Chemometrics[J].Journal of Instrumental Analysis,2023,42(04):389-401.
王巧,于永杰,付海燕等.基于多指标含量测定结合化学计量学的不同产地丹参品质差异分析[J].分析测试学报,2023,42(04):389-401. DOI: 10.19969/j.fxcsxb.22112201.
WANG Qiao,YU Yong-jie,FU Hai-yan,et al.Quality Difference Analysis of Salviae Miltiorrhizae Radix et Rhizoma from Different Origins Based on Multi-index Content Determination Combined with Chemometrics[J].Journal of Instrumental Analysis,2023,42(04):389-401. DOI: 10.19969/j.fxcsxb.22112201.
为对比分析产地对丹参中酚酸类和丹参酮类成分的影响,采用超高效液相色谱(UPLC)及超高效液相色谱-三重四极杆质谱联用技术(UPLC-QQQ-MS)同时测定来自山东、河南、陕西、四川、安徽共408份丹参中23种化学成分的含量,并对数据进行多元统计分析。研究发现17种酚酸类及6种丹参酮类成分在不同产地丹参中均存在显著差异。山东的丹参样品中丹参酮类成分含量最高,四川的样品中丹酚酸B含量最高,安徽丹参的紫草酸、丹酚酸Y、丹酚酸A、丹酚酸D和丹酚酸E等的含量最高。多种模式识别方法均可用于不同产地丹参的判别分析,线性判别分析(LDA)为产地溯源的最佳模型。正交偏最小二乘法判别分析(OPLS-DA)表明不同产地丹参的化学成分差异较大,不同来源丹参的质量差异标志物不仅限于丹酚酸B、丹参酮Ⅰ、隐丹参酮、丹参酮ⅡA,其他丹酚酸类及丹参酮类也是重要的质量标志物。该研究对全国不同主产区的栽培丹参进行多指标含量测定及建模分析,所建立的定量方法专属性强、准确高效,可为不同产地丹参的质量控制及产地判别提供参考。
Ultra-performance liquid chromatography(UPLC) and ultra-performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-QQQ-MS) were adopted for the simultaneous determination on 23 chemical ingredients in a total of 408 Salviae Miltiorrhizae Radix et Rhizoma(Danshen) samples from Shandong,Henan,Shaaxi,Sichuan and Anhui provinces,in order to compare and analyze the influences of origins on phenolic acids and tanshinones in Danshen.Meanwhile,the data were analyzed by multivariate statistics.The results showed that 17 phenolic acids and 6 tanshinones had significant differences in Danshen.The samples from Shandong province had the highest content of tanshinones,while the samples from Sichuan province had the highest content of salvianolic acid B,and the samples from Anhui province had the highest contents of lithospermic acid,salvianolic acid Y,salvianolic acid A,salvianolic acid D and salvianolic acid E.Various pattern recognition methods were used to identify and analyze Danshen from different origins,and linear discriminant analysis(LDA) was the best model for traceability.Orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that the chemical constituents of Danshen from different origin areas were significantly different.Quality markers of Danshen from different sources were not limited to salvianolic acid B,tanshinone Ⅰ,cryptotanshinone and tanshinone ⅡA,other salvianolic acids and tanshinones were also important quality markers. In this paper,the multi-component content determination and data analysis of cultivated medicinal materials collected from different main origin areas of the country were carried out.The quantitative method established was highly specific,accurate and efficient,which provided a reference for the quality control and identification of Danshen from different producing areas.
丹参产地差异含量测定化学计量学质量评价
Salviae Miltiorrhizae Radix et Rhizomaorigin differencecontent determinationchemometricsquality evaluation
Zhan Z L,Deng A P,Peng H S,Zhang X B,Guo L P,Huang L Q.China J. Chin. Mater. Med. (詹志来,邓爱平,彭华胜,张小波,郭兰萍,黄璐琦.中国中药杂志),2016,41(17):3202-3208.
Yan Y P,You H L,Zhu C F,Xu S L.Lishizhen Med. Mater. Med. Res. (严玉平,由会玲,朱长福,徐树楠.时珍国医国药),2007,18(8):1882-1883.
Huang L Q.National Statistical Report on the Production of Chinese Medicinal Materials. Shanghai:Shanghai Science and Technology Press(黄璐琦.全国中药材生产统计报告.上海:上海科学技术出版社),2020.
Ma X J,Yang J,Ma G R,Zeng W,Guo J,Ma Y.China J. Chin. Mater. Med. (马晓晶,杨健,马桂荣,曾雯,郭娟,马莹.中国中药杂志),2022,47(19):5131-5139.
Mei X D,Cao Y F,Che Y Y,Li J,Shang Z P,Zhao W J,Qiao Y J,Zhang J Y.Chin. J. Nat. Med.,2019,17(1):59.
Feng K R,Li W X,Wang X Y,Wu Y L,Zhang H,Liu X L,Chen Y L,Li K,Tang J F.Chin. Tradit. Herb. Drugs(冯科冉,李伟霞,王晓艳,吴娅丽,张辉,刘现磊,陈毓龙,李琨,唐进法.中草药),2022,53(2):609-618.
Cheng P,Han D Q,Hu W H,Jin Y B,Jiang K,Yin G,Wang J,Wang T J.Chin. J. Pharm. Anal. (程沛,韩东岐,胡伟慧,金一宝,江坤,殷果,王珏,王铁杰.药物分析杂志),2015,35(6):991-996.
Tu Y,Sun L N,Dong Z Y,Tan J F,Chen W X,Huang M Q,Qiu S.J. Chin. Med. Mater. 屠燕,孙连娜,董志颖,谈景福,陈为序,黄孟秋,邱实.中药材),2021,44(6):1337-1342.
Pan X M,Wei H,Liu Y,Liu S X,Zhang T J,Ma X W,Han F N.Chin. Tradit. Herb. Drugs(潘雪梅,韦辉,刘毅,刘素香,张铁军,马旭伟,韩丰年.中草药),2011,42(9):1833-1836.
Song J J,Chen T,Li J,Wang Y.Liaoning J. Tradit. Chin. Med. 宋洁瑾,陈涛,李进,王洋.辽宁中医杂志),2008,(3):431-432.
Dai Y T,Qin X M,Guo X Q,Wang S B.J. Shanxi Med. Univ. (代云桃,秦雪梅,郭小青,王松柏.山西医科大学学报),2006,37(7):716-719.
Song J P,Xu H,Liu X H,Zhou Y Z,Chen L,Fu X S,Li J S,Cai B C.J. Chin. Med. Mater. 宋建平,许虎,刘训红,周逸芝,陈龙,傅兴圣,李俊松,蔡宝昌.中药材),2012,35(9):1414-1417.
Gao Y M,Xie Y,Zhang Y Q,He Q,Zha Q,Chen X F,Wu X Q.Asia-Pacific Tradit. Med. 高宇明,谢艳,张亚琴,何琴,查琪,陈兴福,吴秀清.亚太传统医药),2020,16(9):77-81.
Xu D S,He Y J,Zhong L J.Clin. J. Tradit. Chin. Med. (徐东升,何云娇,钟灵佼.中医药临床杂志),2021,33(11):2247-2250.
National Pharmacopoeia Committee.Chinese Pharmacopoeia. Part 1. Beijing:Chinese Medical Science and Technology Press(国家药典委员会.中华人民共和国药典.第一部.北京:中国医药科技出版社),2020:77-78.
Zeng H,Su S,Xiang X,Sha X X,Zhu Z H,Wang Y Y,Guo S,Yan H,Qian D W,Duan J A.Molecules,2017,22(5):771.
Zhang X D,Cen Y S,Yu Y G,Qi Z C,Yang D F,Wang Z Y,Hou Z N,Liang Z S.Current Pharm. Anal.,2020,16(3):280-290.
Herz S,Wungsintaweekul J,Schuhr C A,Hecht S,Luttgen H,Sagner S,Fellermeier M,Eisenreich W,Zenk M H,Bacher A,Rohdich F.Proc. Natl. Acad. Sci. USA,2000,97(6):2486.
Lee L C,Liong C Y,Jemain A A.Analyst,2018,143(15):3526-3539.
Vapnik V N.The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995.
Yu H,Yang J.Pattern Recognit.,2001,34(10):2067-2070.
Loh W Y.Wiley Interdiscip. Rev.:Data Min. Knowl. Discovery,2011,1(1):14-23.
Dietterich T G.The Handbook of Brain Theory and Neural Networks.Cumberland:The Mit Press,2002,2(1):110-125.
Bradley A P.Pattern Recognit.,1997,30(7):1145-1159.
Krstinić D,Braović M,Šerić L,Božić-Štulić D.Comput. Sci. Inf. Technol.,2020,10:1-14.
Yuan Y,Huang L Q.Bull. Sci. (袁媛,黄璐琦.科学通报),2020,65(12):1093-1102.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构