1.广州禾信仪器股份有限公司,广东 广州 510535
2.广物汽贸股份有限公司,广东 广州 510000
谭国斌,博士,高级工程师,研究方向:环境类质谱仪器的研发及应用,E-mail:gb.tan@hxmass.com
扫 描 看 全 文
燕志奇,汪杰,王慧等.新型乘用车室内空气痕量组分快速检测系统的研制[J].分析测试学报,2023,42(03):292-298.
YAN Zhi-qi,WANG Jie,WANG Hui,et al.Development of a New Rapid Detection System for Trace Components in Indoor Air of Passenger Vehicles[J].Journal of Instrumental Analysis,2023,42(03):292-298.
燕志奇,汪杰,王慧等.新型乘用车室内空气痕量组分快速检测系统的研制[J].分析测试学报,2023,42(03):292-298. DOI: 10.19969/j.fxcsxb.22111701.
YAN Zhi-qi,WANG Jie,WANG Hui,et al.Development of a New Rapid Detection System for Trace Components in Indoor Air of Passenger Vehicles[J].Journal of Instrumental Analysis,2023,42(03):292-298. DOI: 10.19969/j.fxcsxb.22111701.
基于自主研制的真空紫外单光子电离飞行时间质谱仪和在线高精度甲醛分析仪,研制了一套新型乘用车室内空气痕量组分的快速检测系统。通过净化空气对乘用车室内空气进行置换,置换完成后,分别利用在线挥发性有机物质谱仪和在线高精度甲醛分析仪对乘用车室内空气中痕量组分和甲醛进行连续检测。结果表明,苯、甲苯、二甲苯/乙苯、苯乙烯和甲醛在对应浓度范围内具有良好的线性,相关系数(,r,2,)均大于0.99,相对标准偏差均小于5%,检出限分别为1.3 × 10,-9,、0.1 × 10,-9,、0.2 × 10,-9,、0.8 × 10,-9,、0.1 × 10,-9, mol/mol。采用该方法测定车内空气,结果显示,在短时间内,车内VOCs可快速释放达到释放亚平衡状态,并可得到亚平衡状态下的VOCs浓度及释放速率结果。测试车辆车内空气中待测物质苯、甲苯、二甲苯/乙苯、苯乙烯和甲醛的浓度分别为0.30、8.90、25.10、21.90、15.05 µg/m,3,。该方法无复杂耗时的采样过程,操作简便,能够满足乘用车室内空气痕量组分的快速检测筛查需求。
A novel and rapid detection system for trace components in indoor air of passenger vehicles was developed,based on the independently developed vacuum ultraviolet single photon ionization time-of-flight mass spectrometer and on-line high precision formaldehyde analyzer.Firstly,the indoor air of passenger vehicles was replaced by purified air,then the trace components of volatile organic compounds in indoor air of passenger vehicles were continuously detected with volatile organic compounds online mass spectrometer,while the formaldehyde in indoor air of passenger vehicles was continuously detected by using an online high precision formaldehyde analyzer.The results indicated that benzene,toluene,xylene/ethylbenzene,styrene and formaldehyde exhibited good linearity in the corresponding concentration ranges,with their correlation coefficients(,r,2,) all greater than 0.99,and relative standard deviations less than 5%.The limits of detection were 1.3 × 10,-9,,0.1 × 10,-9,,0.2 × 10,-9,,0.8 × 10,-9, and 0.1 × 10,-9, mol/mol,respectively.This method was applied to determine the indoor air of passenger vehicles.The results showed that the VOCs in indoor air of passenger vehicles could be released quickly to reach a sub-equilibrium state in a short time,and the results of VOCs concentration and release rate under the sub-equilibrium state could be obtained.The concentrations of benzene,toluene,xylene/ethylbenzene,styrene and formaldehyde in indoor air of the tested vehicle were 0.30,8.90,25.10,21.90 and 15.05 µg/m,3,,respectively.With no complex and time-consuming sampling process and easy to operate,this proposed method could meet the requirements for rapid detection and screening on the trace components in indoor air of passenger vehicles.
乘用车室内空气痕量VOCs组分快速检测
passenger vehiclesindoor airtrace components of VOCsrapid detection
Müller D,Klingelhöfer D,Uibel S,Groneberg D A.J. Occup. Med. Toxicol.,2011,6(1):1-7.
Li Y W,An D Y,Sun T,Li X H,Wang H F.Auto Time(李亚伟,安德英,孙涛,李晓海,王昊峰.时代汽车),2020,3:28-29.
Lu Y Y,Lin Y,Zhang H,Ding D X,Sun X,Huang Q S,Lin L F,Chen Y J,Chi Y L,Dong S J.Int. J. Environ. Res. Public Health,2016,13(6):596.
Yang T,Zhang P P,Xu B P,Xiong J Y.Int. J. Heat Mass Tran.,2017,110:671-679.
Wang T,Zeng P Y,Wang M D,Li Z T,Li X,Huo Y J,Zhang Z J,Ye F.J. Instrum. Anal. 王彤,曾沛荧,王明蝶,李征途,李雪,霍羽佳,张志娟,叶枫.分析测试学报),2020,39(4):467-472.
Araki A,Kawai T,Eitaki Y,Kanazawa A,Morimoto K,Nakayama K,Shibata E,Tanaka M,Takigawa T,Yoshimura T,Chikara H,Saijo Y,Kishi R.Sci. Total Environ.,2010,408(10):2208-2215.
Xu B,Wu Y,Gong Y,Wu S R,Wu X R,Zhu S H,Liu T.Atmos. Pollut. Res.,2016,7(2):215-220.
Guo B Q,Sun Y,Chu M J,Wu L F,Jiang X H,Wang Y,Mu X L.J. Instrum. Anal. 郭冰清,孙运,褚美娟,武隆丰,蒋学慧,汪曣,穆新林.分析测试学报),2018,37(3):263-268.
Li G H,Jiang B,Wang S X,Li C,Yuan B,Wang B G,Zhang Z Y.J. Instrum. Anal. 李光辉,蒋斌,王思行,李成,袁斌,王伯光,张展毅.分析测试学报),2020,39(12):1441-1450.
Hsu D J,Huang H L.Atmos. Environ.,2009,43(36):5723-5730.
Kim K H,Szulejko J E,Jo H J,Lee M H,Kim Y H,Kwon E,Ma C J,Kumar P.Environ. Pollut.,2016,215:340-346.
Yue T T,Yue X,Chai F,Hu J N,Lai Y T,He L Q,Zhu R C.Atmos. Environ.,2017,151:62-69.
You K W,Ge Y S,Hu B,Ning Z W,Zhao S T,Zhang Y N,Xie P.J. Environ. Sci.,2007,19:1208-1213.
Chien Y C. Sci. Total Environ.,2007,382(2/3):228-239.
Shi D Z,Su Y,Zheng H,Zhang Y H,Liu X Y.Automob. Technol. Mater. (石德峥,苏阳,郑虹,张英虹,刘鑫宇.汽车工艺与材料),2020,1:1-4.
Tan G B,Gao W,Huang Z X,Hong Y,Fu Z,Dong J G,Cheng P,Zhou Z.Chin. J. Anal. Chem. (谭国斌,高伟,黄正旭,洪义,傅忠,董俊国,程平,周振.分析化学),2011,39(10):1470-1475.
Huo L,Gao W,Su H B,Tan G B,Mai Z B,Huang Z X.J. Chin. Mass Spectrom. Soc. (霍蕾,高伟,苏海波,谭国斌,麦泽彬,黄正旭.质谱学报),2018,39(2):171-179.
Yamamoto Y,Kanno N,Tonokura K,Yabushita A,Kawasaki M.Int. J. Mass Spectrom.,2010,296(1/3):25-29.
Lv M Q,Huang W J,Rong X,He J Z,Yang X D.Build. Environ.,2020,175:106796.
Yoshida T,Matsunaga I,Tomioka K,Kumagai S.Indoor Built Environ.,2006,15(5):445-462.
0
浏览量
7
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构