江苏大学 食品与生物工程学院,江苏 镇江 212013
陈斌,博士,教授,研究方向:食品与农产品品质快速无损检测技术研究,E-mail:Ncp@ujs.edu.cn
扫 描 看 全 文
陈斌,郑小欢,耿德春等.基于多参数融合的红外光谱对混合物的组分识别研究[J].分析测试学报,2023,42(03):323-329.
CHEN Bin,ZHENG Xiao-huan,GENG De-chun,et al.Study on Identification of Components in Mixtures Using Infrared Spectroscopy Based on Multi-parameter Fusion[J].Journal of Instrumental Analysis,2023,42(03):323-329.
陈斌,郑小欢,耿德春等.基于多参数融合的红外光谱对混合物的组分识别研究[J].分析测试学报,2023,42(03):323-329. DOI: 10.19969/j.fxcsxb.22101601.
CHEN Bin,ZHENG Xiao-huan,GENG De-chun,et al.Study on Identification of Components in Mixtures Using Infrared Spectroscopy Based on Multi-parameter Fusion[J].Journal of Instrumental Analysis,2023,42(03):323-329. DOI: 10.19969/j.fxcsxb.22101601.
为解决混合物组分的识别问题,该文以7种标准品以及由7种标准品配制的26种混合物为研究对象,以准确率与误判率为混合组分识别效果的评价指标,在研究谱峰匹配算法、非负最小二乘匹配算法与相关系数匹配系数算法的基础上,采用一种基于多特征融合的BP神经网络模型红外光谱技术对混合物组分进行识别,并与逻辑回归模型进行了对比。结果表明,3种单一匹配算法的识别准确率均低于76.31%,多特征融合的逻辑回归模型与多特征融合的BP神经网络模型预测集的识别准确率分别为83.33%和98.18%,误判率分别为4.76%和1.82%。研究结果表明,中红外光谱技术结合BP神经网络模型可以更好地进行混合物的组分识别。为了进一步探究模型对混合组分最低浓度的检测能力,采用香兰素和乙醇两组分溶液进行检出限的研究。结果表明混合物中香兰素的质量浓度为0.03 g/mL时准确率为100.00%,误判率为14.29%;香兰素质量浓度低于0.03 g/mL时,准确率下降20.00%,误判率上升19.04%。故可认为该研究能识别出的香兰素乙醇溶液中香兰素的最低质量浓度为0.03 g/mL。
7 standard substances and 26 mixtures made from 7 standard substances were selected as the research objects in this paper, with the accuracy and misjudgment rate as the evaluation indexes for recognition effect of the components of mixtures, and spectral peak matching algorithm, non-negative least squares matching algorithm and correlation coefficient matching coefficient algorithm were studied, in order to solve the problem of identifying the components of mixtures. Furthermore, a BP neural network model infrared spectroscopy technique based on multi-feature fusion was used to identify the components of the mixture, which was compared with the logistic regression model. The results showed that the recognition accuracies of three single matching algorithms are lower than 76.31%, while the recognition accuracies of multi-feature fusion logistic regression model and multi-feature fusion BP neural network model prediction set are 83.33% and 98.18%, respectively, and the misjudgment rates are 4.76% and 1.82%. The results showed that mid-infrared spectroscopy combined with BP neural network model could better identify the components of the mixture. In order to further explore the detection ability of the model towards the lowest concentration of mixed components, the detection limit for vanillin and ethanol solution was studied. The results showed that the accuracy rate was 100.00% and the misjudgment rate was 14.29% when the concentration of vanillin was 0.03 g/mL. When the concentration of vanillin was lower than 0.03 g/mL, the accuracy decreased by 20.00% and the misjudgment rate increased by 19.04%. Therefore, it may be considered that the minimum mass concentration of vanillin in vanillin and ethanol solution identified in this study is 0.03 g/mL.
红外光谱混合物多参数BP神经网络组分识别
infrared spectroscopymixturemulti-parametersBP neural networkcomponent identification
Zhang R Q,Shang Z C,Lu S Q,Jia N,Jiang X,Pu Z Y,Du Y P.Chemom. Intell. Lab. Syst.,2021,8(2):42-50.
Chu X L,Li J Y,Chen P.Chin. J. Anal. Chem. (褚小立,李敬岩,陈瀑.分析化学),2014,42(9):1379-1386.
Xu L,He H Y,Liu C M.Spectrosc. Spectral Anal. (徐琳,何洪源,刘翠梅.光谱学与光谱分析),2021,41(9):2829-2834.
Shan Y B,Li M,Huo Y M,Ma J,Liu H W.J. Instrum. Anal. (单雅冰,李珉,霍雨萌,马俊,刘虎威.分析测试学报),2022,41(4):536-544.
Blanco M,Eustaquio A,González J M.J. Pharm. Biomed. Anal.,2000,22(1):139-148.
Zhang J Q,Li F,Yang Q F,Hu J X,Ni C M,Zhang X Y.J. Instrum. Anal. (张建强,李帆,杨啟富,胡竣勋,倪春明,张馨予.分析测试学报),2022,41(7):1007-1013.
Yang Q H,Lin Q B,Guan W Y,Ma H S,Wei X F,Wang Y.J. Instrum. Anal. (杨青华,林勤保,关伟焰,马洪生,魏晓芬,王玥.分析测试学报),2021,40(11):1571-1579.
Yu M,Li S K,Dai X J,Zheng Y,Li P,Jiang L W,Liu X.J. Instrum. Anal. 余梅,李尚科,戴雪婧,郑郁,李跑,蒋立文,刘霞.分析测试学报),2021,40(9):1374-1379.
Li J Y,Chu X L,Liu D.Acta Pet. Sin. (李敬岩,褚小立,刘丹.石油学报(石油加工)),2022,38(3):710-717.
Yan F,Zhu Q B,Huang M.Chin. J. Anal. Chem. (颜凡,朱启兵,黄敏.分析化学),2020,48(2):298-305.
Kong X B,Shu N,Tao J B.Spectrosc. Spectral Anal. (孔祥兵,舒宁,陶建斌.光谱学与光谱分析),2011,31(8):2166-2170.
Fan X G,Wang X,Xu Y J,He H.Meas. Sci. Technol.,2015,29(8):22-29.
Liu M H,Dong Z R,Xin G F.Chin. J. Lasers(刘铭晖,董作人,辛国锋.中国激光),2019,46(1):324-331.
Xu L J,Meng X Y,Wei R.Spectrosc. Spectral Anal. (徐良骥,孟雪莹,韦任.光谱学与光谱分析),2022,42(7):2135-2142.
Meng Z J,Liu H Y,An X F.Trans. Chin. Soc. Agric. Mach. (孟志军,刘淮玉,安晓飞.农业机械学报), 2022,53(2):231-238,245.
Yang F T,Cai B W,Heng H.Sci. Sin.(Chim.) (杨福田,蔡博文,衡航.中国科学:化学),2022,52(5):709-720.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构