1.青岛科技大学 机电工程学院,山东 青岛 266042
2.青岛工程职业学院 信息工程学院,山东 青岛 266112
尹凤福,博士,教授,研究方向:机电产品绿色设计与制造,E-mail:yinff@qust.edu.cn
扫 描 看 全 文
李家帅,薛莲莲,王凯等.基于近红外光谱的塑料分选技术预处理方法的优化[J].分析测试学报,2023,42(03):351-356.
LI Jia-shuai,XUE Lian-lian,WANG Kai,et al.Optimization of Pretreatment Methods for Plastic Sorting Technology Based on Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2023,42(03):351-356.
李家帅,薛莲莲,王凯等.基于近红外光谱的塑料分选技术预处理方法的优化[J].分析测试学报,2023,42(03):351-356. DOI: 10.19969/j.fxcsxb.22101104.
LI Jia-shuai,XUE Lian-lian,WANG Kai,et al.Optimization of Pretreatment Methods for Plastic Sorting Technology Based on Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2023,42(03):351-356. DOI: 10.19969/j.fxcsxb.22101104.
为进行不同塑料种类的识别,采集了尼龙(PA)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)4类塑料的近红外光谱数据,并针对光谱数据采集时存在的噪声、基线和光程问题,基于3点Savitzky-Golay卷积平滑(S-G)、一阶导数(FD)、二阶导数(SD)、标准正态变量变换(SNV)、多元散射校正(MSC)进行了预处理组合优化研究,以竞争性自适应重加权算法(CARS)进行特征波长提取,并运用支持向量机算法(SVM)建立模型。结果显示:所有预处理方法中,预处理组合S-G + FD + SNV获得的结果最优,S-G + FD + SNV + SVM模型的平均准确率高达96.67%,其训练集和验证集的平均准确率均为100%。上述预处理组合优化方法可为4类常见塑料的鉴别研究提供参考。
In order to identify different types of plastics,the near-infrared spectral data of four types of plastics,i.e.nylon(PA),polypropylene(PP),polystyrene(PS) and polyvinyl chloride(PVC),were collected.Meanwhile,according to the existing noise,baseline and optical path issues during spectral data acquisition,pretreatment combination optimization methods were investigated,based on 3-point Savitzky-Golay convolution smoothing(S-G),first derivative(FD),second derivative(SD),standard normal variable transformation(SNV) and multivariate scattering correction(MSC).Furthermore,the characteristic wavelength was extracted by competitive adaptive reweighting sampling(CARS),and a model was established using support vector machine(SVM).The results showed that among all preprocessing methods,the preprocessing combination S-G + FD + SNV obtains the best results,while the average accuracy of the S-G + FD + SNV + SVM model is as high as 96.67%,and the average accuracies of its training set and validation set are both 100%.The mentioned-above pretreatment combination optimization method could provide a reference for the identification on four common plastics.
塑料分选近红外光谱(NIR)预处理组合预测分析
plastic sortingnear-infrared spectroscopy(NIR)preprocessingcombinationpredictive analysis
Li H D,Zheng L P,Zhou H,Sun Y C,Zhang T,Chen T,Yang T,Zhang B.Environ. Eng. 李海丹,郑丽萍,周涵,孙煜璨,张涛,陈坦,杨婷,张冰.环境工程),2022,40(9):126-134.
Liang J D,Li J.Chem. Eng. Des. Commun. (梁吉东,黎军.化工设计通讯),2021,47(9):172-173.
Zheng Y,Bai J R,Xu J N,Li X Y,Zhang Y M.Waste Manage. (Oxford),2018,72:87-98 .
Zhu K Y,Cao C L,Yang S W,Qian Q R,Chen Q H.J. Fujian Normal Univ.:Nat. Sci. Ed. (朱珂郁,曹长林,杨松伟,钱庆荣,陈庆华.福建师范大学学报:自然科学版),2021,37(5):109-116.
Hou Y L,Xie L G,Zhao X,Sun H M.Chin. J. Pharm. (侯玉磊,谢兰桂,赵霞,孙会敏.中国医药工业杂志),2015,46(6):614-619.
Chu X L,Shi Y Y,Chen P,Li J Y,Xu Y P.J. Instrum. Anal. (褚小立,史云颖,陈瀑,李敬岩,许育鹏.分析测试学报),2019,38(5):603-611.
Tian J,Wang X J,Qi W L,Liang Z N,Chen B.J. Instrum. Anal. (田静,王晓娟,齐文良,梁振楠,陈斌.分析测试学报),2020,39(11):1416-1420.
Zhu S C,You J,Jin G,Lei Y,Guo X M.Spectrosc. Spectral Anal. (朱世超,游剑,晋刚,雷玉,郭雪媚.光谱学与光谱分析),2018,38(10):3053-3057.
Su D B,Li K K,Gao F L,Jiang H.Shanghai Plastics(苏东斌,李开开,高飞龙,姜红.上海塑料),2022,50(4):49-56.
Chen K,McLellan M D,Ding L,Wendl M C,Kasai Y,Wilson R K,Mardis E R.Genome Res.,2007,17(5):659-666.
Xue L L.Study on Pattern Recognition and Classification of Near Infrared Spectroscopy in Plastic Sorting. Qingdao:Qingdao University of Science and Technology(薛莲莲.塑料分选中近红外光谱模式识别分类的研究.青岛:青岛科技大学),2020.
Diwu P Y,Bian X H,Wang Z F,Liu W.Spectrosc. Spectral Anal. (第五鹏瑶,卞希慧,王姿方,刘巍.光谱学与光谱分析),2019,39(9):2800-2806.
Yin F F,Yan L,Han Q X,Xu Y H.Environ. Eng. (尹凤福,闫磊,韩清新,徐衍辉.环境工程),2017,35(12):134-138.
Zhu S C,Chen H H,Wang M M,Guo X M,Lei L,Jin G.Adv. Ind. Eng. Polym. Res.,2019,2(2):77-81.
Zhang W J,Jiao A R,Tian J,Wang X J,Wang B,Xu X X.J. Instrum. Anal. (张文杰,焦安然,田静,王晓娟,王斌,徐晓轩.分析测试学报),2021,40(7):1062-1067.
Zhu S C,Gao X Y,Zhang Z S Y,Cao H M,Zheng D Y,Zhang L,Xie Q L,Sa J M.Chin. J. Anal. Chem. (朱思聪,高西娅,张朱珊莹,曹汇敏,郑冬云,张莉,谢勤岚,撒继铭.分析化学),2022,50(9):1415-1429.
Wu S.Research on Quantitative Detection of Iodine Value and Saponification Value Based on Spectroscopy and Type Identification Based on Characteristic Values in Edible Oil. Wuhan:Wuhan Polytechnic University(吴双.食用油碘值与皂化值的光谱定量检测及特征值鉴别油脂种类方法的研究.武汉:武汉轻工大学),2017.
Nurunnabi A,West G,Belton D.Pattern Recognit.,2015,48(4):1404-1419.
Yin B Q,Shi Y X,Sun R Z.J. Univ. Sci. Technol. Chin. (尹宝全,史银雪,孙瑞志.中国科学技术大学学报),2016,46(3):208-214.
Li H D,Liang Y Z,Xu Q S,Cao D S.Anal. Chim. Acta,2009,648(1):77-84.
Xu Q L,Guo L Y,Du K,Shan B M,Zhang F K.J. Instrum. Anal. (徐啟蕾,郭鲁钰,杜康,单宝明,张方坤.分析测试学报),2022,41(8):1229-1234,1241.
Chen Y,Qiu Z J,Zhang B.J. Instrum. Anal. (陈煜,邱智军,张彬.分析测试学报),2021,40(12):1690-1696.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构