武昌理工学院 生命科学学院,湖北 武汉 430223
刘虎威,博士,教授,研究方向:生物分析,E - mail:hwliu@pku.edu.cn
扫 描 看 全 文
万红,赵钊,梁花蕾等.表面等离子体共振传感器生物识别分子的固定化方法[J].分析测试学报,2022,41(09):1403-1409.
WAN Hong,ZHAO Zhao,LIANG Hua-lei,et al.Immobilization Methods of Bioreceptor for Surface Plasma Resonance Sensors[J].Journal of Instrumental Analysis,2022,41(09):1403-1409.
万红,赵钊,梁花蕾等.表面等离子体共振传感器生物识别分子的固定化方法[J].分析测试学报,2022,41(09):1403-1409. DOI: 10.19969/j.fxcsxb.22061401.
WAN Hong,ZHAO Zhao,LIANG Hua-lei,et al.Immobilization Methods of Bioreceptor for Surface Plasma Resonance Sensors[J].Journal of Instrumental Analysis,2022,41(09):1403-1409. DOI: 10.19969/j.fxcsxb.22061401.
表面等离子体共振具有无需标记样品和实时检测等优点,广泛应用于药物筛选以及生物、药物、食品等领域的检测。构建合适的生物传感界面是提高检测灵敏度和选择性的重要途径。该文介绍了利用化学偶联生物识别分子的非定向固定方法,以及利用化学键合或生物分子的特异性反应定向固定生物识别分子的方法,比较了两种固定方法的优缺点,并讨论了未来的发展趋势。
Surface plasma resonance is widely used for drug screening,and the analysis in biological,pharmaceutical,food and other fields due to its advantages of no labeling and real-time detection.Constructing a suitable biosensing interface is an important way to improve the detection sensitivity and selectivity of biosensors.This review describes the non-oriented immobilization methods using chemically coupled bioreceptor and the oriented immobilization methods that utilize specific properties of chemical bonding or biomolecules.The advantages and disadvantages of each immobilization method are summarized,and the future development is also discussed.
表面等离子体共振传感器生物识别分子固定化方法
surface plasma resonancesensorsbioreceptorimmobilization
Ying B S,Zhu J,Ren Y H,Li N,Wu C S,Yin J G,Jin G M,Su C.Laser J. 应必仕,朱君,任益弘,李娜,伍长松,银锦国,金光明,苏畅.激光杂志),2021,42(9):1-5.
Wang Y Z,Ye H Y,Nie L F,Wu H B,Qiu W N,Fang C D,Lei G X,Zeng W Q.China Med. Pharm. 王永智,叶华跃,聂利芳,吴宏斌,邱文娜,方朝东,雷高新,曾玮乔.中国医药科学),2020,10(6):17-21.
Xue J J,Bai Y,Liu H W.Anal. Bioanal. Chem.,2019,411(17):3721-3729.
Zhang Y D,Xu S T,Bai Y,Liu H W.J. Anal. Sci. (张一丁,徐姝婷,白玉,刘虎威.分析科学学报),2017,33(5):691-699.
Wang J,Wang Q,Song S X.J. Chin. Pharm. Sci.,2020,29(7):504-513.
Zheng X Y,Liu Y,Jia X R,Dong M,Li X R.J. Pharm. Res. (郑曦妍,刘宇,贾锡荣,董萌,李旭蕊.药学研究),2021,40(3):196-198.
Jebelli A,Oroojalian F,Fathi F,Mokhtarzadeh A,Guardia M.Biosens. Bioelectron.,2020,169:112599.
Zhou J R,Qi Q Q,Wang C,Qian Y F,Liu G G,Wang Y B,Fu L L.Biosens. Bioelectron.,2019,142:111449.
Qu J H,Dillen A,Saeys W,Lammertyn J,Spasic D.Anal. Chim. Acta,2020,1104:10-27.
Hinman S S,McKeating K S,Cheng Q.Anal. Chem.,2018,90:19-39.
Stigter E C A,de Jong G J,van Bennekom W P.Trends Anal. Chem.,2013,45:107-120.
Drozd M,Karoń S,Malinowska E.Sensors,2021,21:3781.
Vericat C,Vela M E,Benitez G,Carro P,Salvarezza R C.Chem. Soc. Rev.,2010,39:1805-1834.
Bhadra P,Shajahan M S,Bhattacharya E,Chadha A.RSC Adv.,2015,5:80480-80487.
Melaine F,Saad M,Faucher S,Tabrizian M.Anal. Chem.,2017,89:7802-7807.
Kim S,Lee H J.Anal. Chem.,2017,89:6624-6630.
Castiello F R,Tabrizian M.Anal. Chem.,2018,90:3132-3139.
Reiner A T,Fossati S,Dostalek J.Sens. Actuators B,2018,257:594-601.
Yu H X,Han R X,Su J, Chen H L,Li D C.Clin. Chim. Acta,2019,502:9-14.
Jing W W,Wang Y,Yang Y Z,Wang Y,Ma G Z,Wang S P,Tao N J.ACS Nano,2019,13(8):8609-8617.
Karczmarczyk A,Reiner-Rozman C,Hageneder S,Dubiak-Szepietowska M,Dostálek J,Feller K H.Anal. Chim. Acta,2016,937:143-150.
Li S P,Yang M,Zhou W F,Johnston T G,Wang R,Zhu J S.Appl. Surf. Sci.,2015,355:570-576.
He Q Y,Chen Y S,Shen D,Cui X P,Zhang C G,Yang H Y,Zhong W Y,Eremin S A,Fang Y X,Zhao S Q.Talanta,2019,195:655-661.
Xia Y,Zhang P,Yuan H,Su R,Huang R,Qi W,He Z.Analyst,2019,144(19):5700-5705.
Abbas A,Linman M J,Cheng Q.Biosens. Bioelectron.,2011,26:1815-1824.
Wang Y J,Partridge A,Wu Y Q.Anal. Biochem.,2016,508:46-49.
Lee H,Dellatore S M,Miller W M,Messersmith P B.Science,2007,318:426-430.
Wood J B,Szyndler M W,Halpern A R,Cho K,Corn R M.Langmuir,2013,29:10868-10873.
Toma M,Tawa K.ACS Appl. Mater. Interfaces,2016,8:22032-22038.
Shi S,Wang L B,Su R X,Liu B S,Huang R L,Qi W,He Z M.Biosens. Bioelectron.,2015,74:454-460.
Ladd J,Boozer C,Yu Q M,Chen S F,Homola J,Jiang S Y.Langmuir,2004,20:8090-8095.
Bombera R,Leroy L,Livache T,Roupioz Y.Biosens. Bioelectron.,2012,33:10-16.
Leroy L,Bombera R,Engel E,Calemczuk R,Laplatine L,Baganizi D D R,Marche P N,Roupioz Y,Livache T.Lab Chip,2014,14(12):1987-1990.
Tort N,Salvador J P,Avino A,Eritja R,Comelles J,Martinez E,Samitier J,Marco M P.Bioconj. Chem.,2012,23(11):2183-2191.
Daems D,Pfeifer W,Rutten I,Sacca B,Spasic D,Lammertyn J.ACS Appl. Mater. Interfaces,2018,10(28):23539-23547.
Makaraviciute A,Ramanavicius A,Ramanaviciene A.Anal. Methods,2015,7(23):9875-9884.
Paiva T O,Almeida I,Marquês J T,Liu W,Niu Y,Jin G,Viana A S.Appl. Sur. Sci.,2017,412:455-463.
Van't Veer I L,Leloup N O L,Egan A J F,Janssen B J C,Martin N I,Vollmer W,Breukink E.ChemBioChem,2016,17:2250-2256.
Trilling A K,Hesselink T,van Houwelingen A,Cordewener J H G,Jongsma M A,Schoffelen S,van Hest J C M,Zuilhof H,Beekwilder J.Biosens. Bioelectron.,2014,60:130-136.
Wasserberg D,Cabanas-Danes J,Prangsma J,O'Mahony S,Cazade P A,Tromp E,Blum C,Thompson D,Huskens J,Subramaniam V,Jonkheijm P.ACS Nano,2017,11(9):9068-9083.
Wang X Y,Liu Q H,Tan X F,Liu L Y,Zhou F M.Analyst,2019,144(2):587-593.
Kurzątkowska K,Mielecki M,Grzelak K,Verwilst P,Dehaen W,Radecki J,Radecka H.Talanta,2014,130:336-341.
Chiu N F,Lin T L,Kuo C T.Sens. Actuators B,2018,265:264-272.
Chiu N F,Yang H T.Front. Bioeng. Biotechnol.,2020,8:234.
Horta S,Qu J H,Dekimpe C,Bonnez Q,Vandenbulcke A,Tellier E,Kaplanski G,Delport F,Geukens N,Lammertyn J,Vanhoorelbeke K.Anal. Chem.,2020,92(20):13880-13887.
Liu L Y,Han C W,Jiang M,Zhang T T,Kang Q,Wang X Y,Wang P C,Zhou F M.Anal. Chim. Acta,2021,1170:338625.
Souto D E P,Fonseca A M,Barragan J T C,de CS Luz R,Andrade H M,Damos F S,Kubota L T.Biosens. Bioelectron.,2015,70:275-281.
Wang W,Chen Q.Anal. Biochem.,2022,640:114411.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构