江南大学 化学与材料工程学院,江苏 无锡 214122
王光丽,博士生导师,教授,研究方向:纳米分析化学,E - mail:glwang@jiangnan.edu.cn
扫 描 看 全 文
陈彦如,张岚,王光丽.基于PbTiO3表面原位纳米酶的生物传感平台用于NF-κB p50检测[J].分析测试学报,2022,41(12):1785-1792.
CHEN Yan-ru,ZHANG Lan,WANG Guang-li.Detection of NF-κB p50 Using a Biosensing Platform Based on In Situ Nanozyme on PbTiO3 Surface[J].Journal of Instrumental Analysis,2022,41(12):1785-1792.
陈彦如,张岚,王光丽.基于PbTiO3表面原位纳米酶的生物传感平台用于NF-κB p50检测[J].分析测试学报,2022,41(12):1785-1792. DOI: 10.19969/j.fxcsxb.22050801.
CHEN Yan-ru,ZHANG Lan,WANG Guang-li.Detection of NF-κB p50 Using a Biosensing Platform Based on In Situ Nanozyme on PbTiO3 Surface[J].Journal of Instrumental Analysis,2022,41(12):1785-1792. DOI: 10.19969/j.fxcsxb.22050801.
该文介绍了一种通过将K,4,Fe(CN),6,配位到PbTiO,3,表面获得原位纳米酶的新策略。利用脱氧核糖核苷5'-单磷酸(dNMP)在PbTiO,3,表面的结合,阻止K,4,Fe(CN),6,在PbTiO,3,表面原位形成纳米酶,构建了基于纳米酶的生物传感平台。当NF-κB p50存在时,dNMP难以产生,K,4,Fe(CN),6,得以顺利结合到PbTiO,3,表面,并在其表面自发形成纳米酶,催化TMB氧化以定量检测NF-κB p50。实验表明,该方法对NF-κB p50的检测线性范围为3.0 pmol/L ~ 10 nmol/L,检出限(,S,/,N, = 3)为1.2 pmol/L,对实际样品的加标回收率为99.1% ~ 102%,相对标准偏差不大于5.3%。该方法为NF-κB p50的检测提供了一种无标记、无固定且具有信号放大作用的新策略,不仅灵敏度高、选择性好、操作简便,且在实际样品检测中具有潜在的应用价值。
A biosensing platform for the detection of NF-κB p50 was constructed,based on an ,in situ, nanozyme with adjustable catalytic activity.The ,in situ, nanozyme was obtained by combining K,4,Fe(CN),6, onto the surface of PbTiO,3,.Generally,the attachment of deoxyribonucleoside 5'-monophosphate(dNMP) onto the PbTiO,3, surface may prevent the spontaneous formation of nanozyme on its surface,while in the presence of NF-κB p50,dNMP is hardly to be generated,which allows K,4,Fe(CN),6, combining smoothly to the surface of PbTiO,3,,and a spontaneously formed nanozyme on PbTiO,3, surface catalyzes TMB oxidation for the quantitative detection of NF-κB p50.The results showed that the detection linear range of this method for NF-κB p50 was 3.0 pmol/L-10 nmol/L,while the limits of detection(,S,/,N ,= 3) was 1.2 pmol/L.The spiked recoveries for real samples ranged from 99.1% to 102%,with relative standard deviations not more than 5.3%.This method provides a new strategy in label-free,immobilization-free mode for the detection of NF-κB p50 with amplified signal,which not only has high sensitivity,good selectivity and simple operation,but also has an application potential in the detection of actual samples.
纳米酶生物传感PbTiO3NF-κB p50
nanozymebiosensingPbTiO3NF-κB p50
Fan Z Q,Wang J F,Hao N,Li Y H,Yin Y H,Wang Z P,Ding Y D,Zhao J F,Zhang K,Huang W.Chem. Commun.,2019,55(79):11892-11895.
Lu L H,Su H J,Li F.Anal. Chem.,2017,89(16):8328-8334.
Li B Z,Xu L,Chen Y,Zhu W Y,Shen X,Zhu C H,Luo J P,Li X X,Hong J L,Zhou X M.Anal. Chem.,2017,89(14):7316-7323.
Zhang Y,Hu J,Zhang C Y.Anal. Chem.,2012,84(21):9544-9549.
Huang Y Y,Ren J S,Qu X G.Chem. Rev.,2019,119(6):4357-4412.
Wang P Y,Zhang L Y,Zhang W B.J. Instrum. Anal. (王佩瑶,张凌怡,张维冰.分析测试学报),2022,41(8):1121-1129.
Jin L Y,Dong Y M,Wu X M,Cao G X,Wang G L.Anal. Chem.,2015,87(20):10429-10436.
Hamid K,Ali S N,Mohammad E A,Farhad A,Vahid A,Mehdi R N.Sep. Purif. Technol.,2019,211(18):873-881.
Sha L,Zhang X J,Wang G F.Biosens. Bioelectron.,2016,82(15):85-92.
Khoudiakov M,Parise A R,Brunschwig B S.J. Am. Chem. Soc.,2003,125(15):4637-4642.
Kanagadurai R,Sankar R,Sivanesan G,Srinivasan S,Jayavel R.Cryst. Res. Technol.,2007,41(9):853-858.
Jiang X Q,Wang X Y,Lin A Q,Wei H.Anal. Chem.,2021,93(14):5954-5962.
Gao L Z,Zhuang J,Nie L,Zhang J B,Zhang Y,Gu N,Wang T H,Feng J,Yang D L,Yan X Y.Nat. Nanotechnol.,2007,2(9):577-583.
An C H,Wang J Z,Qin C,Jiang W,Wang S T,Li Y,Zhang Q H.J. Mater. Chem.,2012,22(26):13153-13158.
Zhao L,Wang J,Su D D,Zhang Y Y,Lu H Y,Yan X Y,Bai J H,Gao Y,Lu G Y.Nanoscale,2020,12(37):19420-19428.
Wang W,Jiang X P,Chen K Z.Chem. Commun.,2012,48(58):7289-7291.
Zhou S W,Sha H Z,Liu B R,Du X Z.Chem. Sci.,2014,5(11):4424-4433.
Xu X Y,Zhao Z,Qin L D,Wei W,Levine J E,Mirkin C A.Anal. Chem.,2008,80(14):5616-5621.
Zhang K,Fan Z Q,Yao B,Zhang T T,Ding Y D,Zhu S,Xie M H.Biosens. Bioelectron.,2021,176(15):112942.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构