1.青岛科技大学 信息科学技术学院,山东 青岛 266061
2.云南中烟工业有限责任公司 技术中心,云南 昆明 650231
张凤梅,博士,副研究员,研究方向:近红外光谱分析、烟草化学,E - mail:zfm211031@163.com
扫 描 看 全 文
刘鑫鹏,秦玉华,张凤梅等.基于麻雀搜索算法结合深度前馈神经网络的近红外模型转移方法研究[J].分析测试学报,2022,41(11):1621-1628.
LIU Xin-peng,QIN Yu-hua,ZHANG Feng-mei,et al.Study on a Near Infrared Calibration Transfer Method Based on Sparrow Search Algorithm Combined with Deep Feedforward Neural Network[J].Journal of Instrumental Analysis,2022,41(11):1621-1628.
刘鑫鹏,秦玉华,张凤梅等.基于麻雀搜索算法结合深度前馈神经网络的近红外模型转移方法研究[J].分析测试学报,2022,41(11):1621-1628. DOI: 10.19969/j.fxcsxb.22041903.
LIU Xin-peng,QIN Yu-hua,ZHANG Feng-mei,et al.Study on a Near Infrared Calibration Transfer Method Based on Sparrow Search Algorithm Combined with Deep Feedforward Neural Network[J].Journal of Instrumental Analysis,2022,41(11):1621-1628. DOI: 10.19969/j.fxcsxb.22041903.
该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体位置的迭代更新,求得连接权值和阈值的最优初始值;通过多次调整深度前馈神经网络模型的超参数,使网络拟合效果趋于最优,最终确定转移函数。为验证方法的有效性,分别从烟叶近红外光谱谱图、主成分投影和预测结果的角度,将SSA-DFN方法与分段直接校正算法(PDS)、典型相关性分析算法(CCA)转移前后的效果进行了对比。结果表明SSA-DFN方法转移后的从机光谱与原主机光谱重合度最高,转移后主、从机总糖、烟碱含量的预测结果差异不显著,预测平均误差从8.32%、9.15%分别降至4.65%、4.82%,预测均方根误差(RMSEP)和决定系数(,R,2,)等指标均优于PDS和CCA,取得了最佳的转移效果,可满足企业需求。结果表明该方法是一种有效的模型转移方法。
In order to enhance the adaptability of the near-infrared model,a near-infrared spectral model transfer method based on sparrow search algorithm combined with deep feedforward neural network(SSA-DFN) was proposed in this paper,aiming at the problem that the function transfer relationship between master and slave is difficult to determine due to the nonlinear interference caused by the difference between different stations and environmental factors.The depth feedforward network was used to fit the nonlinear function mapping between spectra collected with different instruments,and the sparrow search algorithm was used to initialize the connection weights and thresholds of each layer of the network.The optimal initial values of the connection weights and thresholds were obtained through iterative updating of individual positions in the population.By adjusting the super parameters of the depth feedforward neural network model many times,the network fitting effect tends to be optimal,and finally the transfer function is determined.To verify the effectiveness of this method,SSA-DFN method was compared with PDS and CCA before and after the transfer from the perspectives of near infrared spectrum,principal component projection and prediction results.The results showed that SSA-DFN method has the highest coincidence degree between the slave spectrum after transfer and the original host spectrum,and there is no significant difference in the prediction results of total sugar and nicotine content between the master and slave after transfer.The average prediction error decreased from 8.32% and 9.15% to 4.65% and 4.82%,respectively.The indexes such as RMSEP and ,R,2, were better than PDS and CCA,which achieved the best transfer effect and met the needs of enterprises,indicating that this method is an effective model transfer method.
模型转移麻雀搜索算法深度前馈神经网络近红外光谱
calibration transfersparrow search algorithmdeep feedforward neural networknear infrared spectrum
Chu X L,Chen P,Li J Y,Liu D,Xu Y P.J. Instrum. Anal. (褚小立,陈瀑,李敬岩,刘丹,许育鹏.分析测试学报),2020,39(10):1181-1188.
Zhang J,Hu Y,Zhou L X,Li B Y.J. Instrum. Anal. (张进,胡芸,周罗雄,李博岩.分析测试学报),2020,39(10):1196-1203.
Zhang J,Cai W S,Shao X G.Prog. Chem. (张进,蔡文生,邵学广.化学进展),2017,29(8):902-910.
Xi C C,Feng Y C,Hu C Q.Chin. J. Anal. Chem. (袭辰辰,冯艳春,胡昌勤.分析化学),2014,42(9):1307-1313.
Zheng K Y,Fan W,Wu T,Hu H L,Du Y P,Liang Y Z.Comput. Appl. Chem.,2013,30(3):246-250.
Liu C L,Liu H Y,Sun X R,Wu J Z,Yang Y F.Trans. Chin. Soc. Agric. Mach. (刘翠玲,刘浩言,孙晓荣,吴静珠,杨雨菲.农业机械学报),2020,51(9):344-349.
Wang H F,Hu M F,Zhao X D.Laser Infrared(王会峰,胡敏芳,赵雪丹.激光与红外),2017,47(4):422-427.
Liu Z W,Xu L J,Chen X J.Spectrosc. Spectral Anal. (刘贞文,徐玲杰,陈孝敬.光谱学与光谱分析),2020,40(7):2313-2318.
Feng M H,Zhang T L,Wang L H,Chen R,Lian S J.J. Comput. Appl. (冯明皓,张天伦,王林辉,陈荣,连少静.计算机应用),2019,39(10):2809-2814.
Li Y L,Wang S Q,Chen Q R,Wang X G.Comput. Eng. Appl. (李雅丽,王淑琴,陈倩茹,王小钢.计算机工程与应用),2020,56(22):1-12.
Bin J,Fan W,Liu R X.Chin. Tobacco Sci. (宾俊,范伟,刘仁祥.中国烟草科学),2018,39(3):89-97.
Zhang L,Zhang Y.J. Comput. Res. Dev. (张蕾,章毅.计算机研究与发展),2016,53(1):68-79.
Mao Y H,Gui X L,Li Q,He X S.Appl. Res. Comput. (毛勇华,桂小林,李前,贺兴时.计算机应用研究),2016,33(11):3201-3205.
Xue J K,Shen B.Syst. Sci. Control Eng.,2020,8(1):22-34.
Wu X Y,Bian X H,Yang S,Xu P,Wang H T.J. Instrum. Anal. (武新燕,卞希慧,杨盛,徐沛,王海涛.分析测试学报),2020,39(10):1288-1292.
Xu L,Qin L X,Su Y X,Qin C,Li Z.J. Comput. Appl. (徐路,秦亮曦,苏永秀,秦川,李政.计算机应用),2019,39(S1):41-45.
0
浏览量
6
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构