华东理工大学 化学与分子工程学院 上海市功能性材料化学重点实验室,上海 200237
张凌怡,博士,副教授,研究方向:磁性纳米材料在分析化学中的应用,E - mail:zhanglingyi@ecust.edu.cn
扫 描 看 全 文
王佩瑶,张凌怡,张维冰.新型类过氧化物纳米酶NC@MIL-100(Fe)的制备及其对生物硫醇的测定[J].分析测试学报,2022,41(08):1121-1129.
WANG Pei-yao,ZHANG Ling-yi,ZHANG Wei-bing.Preparation of a Novel Peroxide-like Nanozyme NC@MIL-100(Fe) and Its Application in Biothiols Analysis[J].Journal of Instrumental Analysis,2022,41(08):1121-1129.
王佩瑶,张凌怡,张维冰.新型类过氧化物纳米酶NC@MIL-100(Fe)的制备及其对生物硫醇的测定[J].分析测试学报,2022,41(08):1121-1129. DOI: 10.19969/j.fxcsxb.22021901.
WANG Pei-yao,ZHANG Ling-yi,ZHANG Wei-bing.Preparation of a Novel Peroxide-like Nanozyme NC@MIL-100(Fe) and Its Application in Biothiols Analysis[J].Journal of Instrumental Analysis,2022,41(08):1121-1129. DOI: 10.19969/j.fxcsxb.22021901.
该文利用针状焦(NC)与金属有机框架(MOFs)材料MIL-100(Fe)间的静电相互作用,制备了新型纳米酶NC@MIL-100(Fe),并将其应用于生物硫醇的分析。新材料不仅可充分利用针状焦固有的类酶活性,其片层结构也能够有效改善MIL-100(Fe)的团聚现象,提高材料的整体催化效果。与单独使用针状焦和MIL-100(Fe)作为纳米酶相比,NC@MIL-100(Fe)对底物的亲和力更强,催化反应速度更快,表现出良好的类过氧化物酶催化活性。以3,3′,5,5′-四甲基联苯胺(TMB)和H,2,O,2,为底物对其性能进行评价,得到的米氏常数(,K,m,)分别为0.27 mmol/L和0.43 mmol/L,比辣根过氧化物酶小1.61倍和8.6倍。将该材料用于生物硫醇的分析,谷胱甘肽和半胱氨酸检测的线性范围分别为3 ~ 70 μmol/L、1 ~ 80 μmol/L,检出限分别为0.33 μmol/L和0.22 μmol/L。该法具有线性范围宽、检出限低且选择性良好的特点,用于人血清中生物硫醇浓度的检测取得了良好的效果。
Enzyme-catalyzed reactions are characteristic of high selectivity and high efficiency.Specially designed metal-organic frameworks(MOFs) have catalytic activities similar to natural enzymes,and their porous structures also provide a large number of active sites for catalytic reactions.In this paper,a novel nanozyme NC@MIL-100(Fe) was prepared based on the electrostatic interaction between needle coke(NC) and MOF material(MIL-100(Fe)),which was applied to the analytical methods development of biothiols.The inherent enzyme-like activity of NC was made full use for the new material,whose lamellar structure could effectively avoid the agglomeration phenomenon of MIL-100(Fe),improving the overall catalytic effect of the material.Compared with needle coke and MIL-100(Fe),NC@MIL-100(Fe) as nanozyme has a stronger affinity for the substrate and a faster reaction rate,thus showing a better peroxidase-like catalytic activity.Its performance was evaluated with 3,3′,5,5′-tetramethylbenzidine(TMB) and H,2,O,2, as substrates,and the Michaelis constants(,K,m,) obtained were 0.27 mmol/L and 0.43 mmol/L,respectively,which were 1.61 times and 8.6 times smaller than that of horseradish peroxidase.The material was applied to the development of analytical methods for glutathione and cysteine,with the linear ranges of 3-70 μmol/L and 1-80 μmol/L,and the detection limits of 0.33 μmol/L and 0.22 μmol/L,respectively,showing the advantages of wide linear range,low detection limit and good selectivity.Furthermore,this material was successfully applied to the detection of biothiols concentration in human serum with satisfactory results.
纳米酶针状焦MIL-100(Fe)谷胱甘肽半胱氨酸
nanozymeneedle cokeMIL-100(Fe)glutathionecysteine
Wu J X,Wang X Y,Wang Q,Lou Z P,Li S R,Zhu Y Y,Qin L,Wei H.Chem. Soc. Rev.,2019,48(4):1004-1076.
Gao L Z,Zhuang J,Nie L,Zhang J B,Zhang Y,Gu N,Wang T H,Feng J,Yang D L,Perrett S,Yan X Y.Nat. Nanotechnol.,2007,2(9):577-583.
Liao X W,Liu Y,Wang C.J. Instrum. Anal. (廖学巍,刘旸,王琛.分析测试学报),2022,41(4):476-485.
Zhang X L,Li G L,Wu D,Li X L,Hu N,Chen J,Chen G,Wu Y N.Biosens. Bioelectron.,2019,137:178-198.
Ai L H,Li L L,Zhang C H,Fu J,Jiang J.Chem. Eur. J.,2013,19(45):15105-15108.
Valekar A H,Batule B S,Kim M I,Cho K H,Hong D Y,Lee U H,Chang J S,Park H G,Hwang Y K.Biosens. Bioelectron.,2018,100:161-168.
Xu J B,Xing Y Y,Liu Y T,Liu M Z,Hou X H.Anal. Chim. Acta,2021,1179:338825.
Song Y J,Qu K G,Zhao C,Ren J S,Qu X G.Adv. Mater.,2010,22(19):2206-2210.
Zhang T T,Xing Y,Song Y,Gu Y,Yan X Y,Lu N N,Liu H,Xu Z Q,Xu H X,Zhang Z Q,Yang M.Anal. Chem.,2019,91(16):10589-10595.
Li S,Zhao X T,Gang R T,Cao B Q,Wang H.Anal. Chem.,2020,92(7):5152-5157.
Guan L,Zhang L Q,Zhang Y H,Zhang N.Bull. Am. Ceram. Soc. (关磊,张力嫱,张宇航,张娜.硅酸盐通报),2018,37(9):2857-2861.
Xing X H.Preparation of Graphene from Needle Coke and Its Properties. Taiyuan:Taiyuan University of Technology(邢晓晗.由针状焦制备石墨烯及其性能研究.太原:太原理工大学),2019.
Mohammadpour Z,Malekian J F,Ghasemzadeh S.Mikrochim. Acta,2021,188(7):239.
Huang X,Xia F,Nan Z D.ACS Appl. Mater. Interfaces,2020,12(41):46539-46548.
Xian Z Q,Zhang L,Yu Y,Lin B X,Wang Y M,Guo M L,Cao Y J.Mikrochim. Acta,2021,188(3):1-9.
Keoingthong P,Hao Q,Li S K,Zhang L,Xu J Q,Wang S,Chen L,Tan W H,Chen Z.Chem. Commun.,2021,57(62):7669-7672.
Wu X Q,Xu Y,Chen Y L,Zhao H,Cui H J,Shen J S,Zhang H W.RSC Adv.,2014,4(110):64438-64442.
Liu C,Zhao Y M,Xu D,Zheng X X,Huang Q.Anal. Bioanal. Chem.,2021,413(15):4013-4022.
Deng X C,Zhao J W,Ding Y,Tang H L,Xi F N.New J. Chem.,2021,45(40):19056-19064.
Wu Y H,Chen Q,Liu S,Hua X,Zhang M L,Zhang X F.Chin. Chem. Lett.,2019,30(12):2186-2190.
Ploychompoo S,Chen J D,Luo H J,Liang Q W.J. Environ. Sci. (China),2020, 91:22-34.
Zhang C F,Qiu L G,Ke F,Zhu Y J,Yuan Y P,Xu G S,Jiang X.J. Mater. Chem. A,2013,1(45):14329-14334.
Xu M Q,Liu D Z,Yang J H,Zhu Q,Wang Y L,Sha J Q.ACS Appl. Nano Mater.,2021,4(7):7172-7181.
Dong Y L,Zhang H G,Rahman Z U,Su L,Chen X J,Hu J,Chen X G.Nanoscale,2012,4(13):3969-3976.
Kappi F A,Tsogas G Z,Routsi A M,Christodouleas D C,Giokas D L.Anal. Chim. Acta,2018,1036:89-96.
0
浏览量
5
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构