1.桂林理工大学 环境科学与工程学院,广西 桂林 541004
2.桂林理工大学 化学与生物工程学院, 广西 桂林 541004
李建平,博士,教授,研究方向:电化学分析与化学生物传感器,E - mail:likianping@263.net
扫 描 看 全 文
凌俊,杨光炜,李建平.以壳聚糖为基底的分子印迹电化学传感器研究及倍硫磷测定[J].分析测试学报,2022,41(08):1247-1252.
LING Jun,YANG Guang-wei,LI Jian-ping.Study on a Molecularly Imprinted Electrochemical Sensor with Chitosan as the Substrate for Determination of Fenthion[J].Journal of Instrumental Analysis,2022,41(08):1247-1252.
凌俊,杨光炜,李建平.以壳聚糖为基底的分子印迹电化学传感器研究及倍硫磷测定[J].分析测试学报,2022,41(08):1247-1252. DOI: 10.19969/j.fxcsxb.22011705.
LING Jun,YANG Guang-wei,LI Jian-ping.Study on a Molecularly Imprinted Electrochemical Sensor with Chitosan as the Substrate for Determination of Fenthion[J].Journal of Instrumental Analysis,2022,41(08):1247-1252. DOI: 10.19969/j.fxcsxb.22011705.
研制了一种以壳聚糖修饰层为基底的倍硫磷分子印迹电化学传感器。首次利用修饰电极对探针离子的吸附富集作用提高分子印迹传感器检测的灵敏度。采用交流阻抗法和循环伏安法对传感器响应过程进行电化学表征;对洗脱、重吸附、探针富集时间等实验条件进行优化;考察了壳聚糖对“门控制效应”测量模式的增敏效应。在优化条件下,该传感器对倍硫磷的检测范围为1 ~ 10 000 pg/mL,检出限为0.35 pg/mL。该传感器已成功用于蔬菜和水果中倍硫磷的测定,其加标回收率为99.0% ~ 109%,相对标准偏差为1.9% ~ 2.9%。
A molecularly imprinted electrochemical sensor based on chitosan modified layer was fabricated for the detection of fenthion.For the first time,the adsorption enrichment of the modified electrode to the probe ions was used to improve the sensitivity of the molecular imprinted sensor.The response process of the sensor was characterized by electrochemical impedance spectroscopy and cyclic voltammetry.The experimental conditions such as elution,resorption and probe enrichment time were optimized.The sensitization effect of chitosan on the "gate control effect" measurement mode was investigated.Under the optimized conditions,the detection range of the sensor for fenthion was 1-10 000 pg/mL,with a detection limit of 0.35 pg/mL.The sensor was successfully used for the determination of fenthion in vegetables and fruits samples.The spiked recoveries ranged from 99.0% to 109%,with relative standard deviations of 1.9%-2.9%.
壳聚糖分子印迹倍硫磷信号放大门控效应
chitosanmolecular imprintingfenthionsignal enhancementgating effect
Wang L M,Zhang Q,Chen D F,Liu Y,Li C Y,Hu B S,Du D,Liu F Q.Anal. Lett.,2011,44(9):1591-1601.
Heravizadeh O R,Khadem M,Dehghani F,Shahtaheri S J.Int. J. Environ. Anal. Chem.,2020:1-15.
Smarzewska S,Metelka R,Festinger N,Guziejewski D,Ciesielski W.Electroanalysis,2017,29(4):1154-1160.
Xu R R,Huang X Y J.Food Saf. Food Qual.,2018,9(6):1383-1387.
Bakas I,Oujji N B,Istamboulié G,Piletskyc S,Piletskac E,Ait-Addib E,Ait-Ichoub I,Noguera T,Rouillon R.Talanta,2014,125:313-318.
Lee J,Kim J H.Molecules,2020,25(8):1938.
Aghoutane Y,Diouf A,Österlund L,Bouchikhib B,Baria N E.Bioelectrochemistry,2020,132:107404.
Liu Z Y,Zhang Y,Feng J H,Han Q Z,Wei Q.Sens. Actuators B,2019,287:551-556.
Wang Q,He H P,Dong C,Zhang X H,Wang S F.Sens. Lett.,2014,12(11):1651-1656.
Yu Z Z,Kang T F,Lu L P.J. Instrum. Anal. (于壮壮,康天放,鲁理平.分析测试学报),2020,39(2): 182-189.
Dong Y,Zhang X H,Lin S D,Lu X C,Li J H.J. Instrum. Anal. (董雁,张夏红,林水东,卢晓春,李锦辉.分析测试学报),2020,39(3):365-370.
Aghoutane Y,Bari N E,Laghrari Z,Bouchikhi B.Chem. Proc.,2021,5(1):64.
Yang B,Fu C,Li J P,Xu G B.TrAC,Trends Anal. Chem.,2018,105:52-67.
Zhao J,Li J P,Jiang F Y.Chin. J. Anal. Chem. (赵钧,李建平,蒋复阳.分析化学),2009,37(8):1219-1222.
Yang Y K,Shi Z,Chang Y Y,Wang X M,Yu L G,Guo C X,Zhang J H,Bai B Q,Sun D D,Fan S H.Food Chem.,2021,363:130337.
Motia S,Bouchikhi B,Bari N E.Talanta,2021,223:121689.
Salvo-Comino C,Rassas I,Minot S,Bessueille F,Arab M,Chevallier V,Rodriguez-Mendez M L,Errachid A,Jaffrezic-Renault N.Materials,2020,13(3):688.
Wang Y,Zhang B H,Tang Y,Zhao F Q,Zeng B Z.Microchem. J.,2021,168:106505.
Zeng Y,Song F,Wang L R,Lu G H.Chem. Res. Appl. (曾艳,宋丰,王丽荣,陆光汉.化学研究与应用),2005,17(6):705-709.
Lu B,Shun X Y,Xu J R.J. Huaqiao Univ.:Nat. Sci. Ed. (刘斌,孙向英,徐金瑞.华侨大学学报:自然科学版),2003,24(3):225-233.
Choi C,Nam J P,Nah J W.J. Ind. Eng. Chem.,2016,33:1-10.
Lu G H,Yao X,Wu X G,Zhan T.Microchem. J.,2001,69(1):81-87.
Yin X L,Liu Y Q,Gu H W,Zhang Q,Zhang Z W,Li H,Li P W,Zhou Y.Microchem. J.,2021,168:106411.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构