福建医科大学 药物分析学系,福建省高等学校纳米医药技术重点实验室,福建 福州 350004
CHEN Wei,PhD,Professor,Research fields:Nanobiomedical technology,E-mail:chenandhu@163.com
PENG Hua-ping,PhD,Professor,Research fields:Nanobiomedical technology,E-mail:penghuaping@fjmu.edu.cn
扫 描 看 全 文
郑琼华,盛依伦,张善彪等.超小尺寸聚焦硫量子点荧光传感探针的制备及传感应用[J].分析测试学报,2022,41(04):618-624.
ZHENG Qiong-hua,SHENG Yi-lun,ZHANG Shan-biao,et al.Simple Synthesis of Ultra-small Size Focused Sulfur Quantum Dots for Fluorescence Sensing[J].Journal of Instrumental Analysis,2022,41(04):618-624.
郑琼华,盛依伦,张善彪等.超小尺寸聚焦硫量子点荧光传感探针的制备及传感应用[J].分析测试学报,2022,41(04):618-624. DOI: 10.19969/j.fxcsxb.21123102.
ZHENG Qiong-hua,SHENG Yi-lun,ZHANG Shan-biao,et al.Simple Synthesis of Ultra-small Size Focused Sulfur Quantum Dots for Fluorescence Sensing[J].Journal of Instrumental Analysis,2022,41(04):618-624. DOI: 10.19969/j.fxcsxb.21123102.
采用简单的组装-裂变法和透析后处理技术相结合的方法,制备了一种超小尺寸聚焦的荧光硫量子点(SQDs)。采用透射电子显微镜(TEM)、X射线能谱(EDX)、紫外-可见吸收光谱(UV-Vis)和荧光光谱对所制备的SQDs进行了表征。结果表明,平均粒径为2.2 nm的SQDs在水溶液中具有非激发波长依赖特性和光学稳定性。并且Fe,3+,会显著猝灭SQDs的荧光,推测其猝灭机制为内滤效应(IFE)。基于Fe,3+,对该SQDs产生的荧光猝灭效应,成功构建了一种简便、高选择性和高灵敏度的检测Fe,3+,的荧光分析平台。该方法检测Fe,3+,的线性范围为5~600 μmol/L,检出限(LOD)为1.19 μmol/L,并成功实现了血清样本中Fe,3+,的检测。该方法操作简单、成本低,且具有高灵敏度、高选择性等优点,为SQDs及其相关探针制备提供了一种简单有效的方法,在临床诊断中具有较好的应用前景。
A facile assembly-fission method combined with dialysis post-treatment strategy was adopted to prepare a kind of ultra-small size focused fluorescent sulfur quantum dots(SQDs).The as-prepared SQDs were characterized by transmission electron microscopy(TEM),energy-dispersive X-ray spectroscopy(EDX),UV-Vis absorption spectrometry(UV-Vis) and fluorescence spectrometry.The photoluminescence properties of the SQDs were investigated in detail,which indicated that the SQDs with the average diameter of 2.2 nm exhibited an excitation-independent emission and an optical stability in aqueous solution.Meanwhile,the fluorescence of the SQDs could be quenched by Fe,3+, significantly,and the mechanism for the fluorescence quenching was via inner filter effect(IFE).Based on the fluorescence quenching effect of the Fe,3+,/SQDs system,a facile fluorescence sensing platform was successfully constructed for the highly selective and sensitive detection of Fe,3+,.The proposed SQD-based sensor showed a wide response to Fe,3+, in the range of 5-600 μmol/L,with a detection limit(LOD) of 1.19 μmol/L.In addition,this method,with significant advantages of high sensitivity,high selectivity,simplicity and economy,was successfully applied to the detection of Fe,3+, in human serum,avoiding the deficiencies of complex sample preparation and expensive detection conditions.Thus,this method has a potential application prospect in clinical diagnosis,and opens up a new way for the design of effective fluorescent probes for other biologically related targets.
硫量子点组装-裂变法透析后处理技术三价铁离子
sulfur quantum dotsassembly-fissiondialysis post-treatmentferric iron
Pang S,Liu S Y.Anal. Chim. Acta,2020,1105:155-161.
Abdelhamid H N,Bermejo-Gómez A,Martín-Matute B,Zou X D.Microchim. Acta,2017,184(9):3363-3371.
Ho T T T,Dang C H,Huynh T K C,Hoang T K D,Nguyen T D.Carbohyd. Polym.,2021,251:116998.
Zhang S H,Zhang S Y,Li J R,Huang Z Q,Yang J,Yue K F,Wang Y Y. Dalton Trans.,2020,49(32):11201-11208.
Sun X H,He J,Yang S H,Zheng M D,Wang Y Y,Ma S,Zheng H P.J. Photochem. Photobiol. B,2017,175:219-225.
Tang J P,Huang M Y,Liang Z X,Yang Y Y,Wen Y H,Zhu Q L,Wu X T.Cryst. Growth Des.,2021,(9):5275-5282.
Ali A,Hussain F,Attacha S,Kalsoom A,Qureshi W A,Shakeel M,Kremenakova D.Nanomaterials,2021,11(8):2076.
Li C Q,Xiao L,Zhang Q Y,Cheng X J.Spectrochim. Acta A,2020,243:118763.
Liu Z Z,Chen M J,Guo Y Z,Zhou J H,Shi Q S,Sun R C.Chem. Eng. J.,2020,384:123260.
Guo L,Liu Y,Kong R M,Chen G,Liu Z,Qu F L,Xia L,Tan W H.Anal. Chem.,2019,91(19):12453-12460.
Linehan K,Carolan D,Doyle H.Part. Syst. Charact.,2019,36(4):1900034.
Zhang H,Liu X C,Sun J,Wu X.Microchem. J.,2020,157:105051.
Wang C,Zhou J D,Ran G X,Li F,Zhong Z,Song Q J,Dong Q C.J. Mater. Chem. C,2017,5(2):434-443.
Kalytchuk S,Poláková K,Wang Y,Froning J P,Cepe K,Rogach A L,Zbořil R.ACS Nano,2017,11(2):1432-1442.
Wang H G,Wang Z G,Xiong Y,Kershaw S,Li T Z,Wang Y,Zhai Y Q,Rogach A.Angew. Chem. Int. Ed.,2019,58(21):7040-7044.
Song Y H,Tan J S,Wang G,Gao P X,Lei J H,Zhou L.Chem. Sci.,2020,11:772.
Arshad F,Sk M P.ACS Appl. Nano Mater.,2020,3:3044.
Huang Z M,Gao Y,Huang Z Y,Chen D L,Sun J H,Zhou L.Microchem. J.,2021,170:106656.
Duan Y X,Tan J S,Huang Z M,Deng Q M,Liu S J,Wang G,Li L G,Zhou L.Carbohyd. Polym.,2020,249:116882.
Pal A,Arshad F,Sk M P.Adv. Colloid Interface Sci.,2020,102274.
Li S X,Chen D J,Zheng F Y,Zhou H F,Jiang S X,Wu Y J.Adv. Funct. Mater.,2014,24(45):7133-7138.
Shen L H,Wang H G,Liu S N,Bai Z W,Zhang S C,Zhang X R,Zhang C X.J. Am. Chem. Soc.,2018,140(25):7878-7884.
Li Q L,Shi L X,Du K,Qin Y,Qu S J,Xia D Q,Ding S N.ACS Omega,2020,5(10):5407-5411.
Sheng Y L,Huang Z N,Zhong Q,Deng H H,Lai M C,Yang Y,Chen W,Xia X H,Peng H P.Nanoscale,2021,13(4):2519-2526.
Chen S,Yu Y L,Wang J H.Anal. Chim. Acta,2018,999:13-26.
Zu F L,Yan F Y,Bai Z J,Xu J X,Wang Y Y,Huang Y C,Zhou X G.Microchim. Acta,2017,184(7):1899-1914.
Guo W B,Tang T X,Lu S Z,Xu D M.Anal. Methods,2019,11(35):4456-4463.
Xiao L Q,Shi J,Nan B F,Chen W L,Zhang Q,Zhang E D,Lu M G.Macromol. Mater. Eng.,2020,305(3):1900810.
Ananthanarayanan A,Wang X W,Routh P,Sana B,Lim S,Kim D H,Chen P.Adv. Funct. Mater.,2014,24(20):3021-3026.
Qi P,Zhang D,Wan Y.Talanta,2017,170:173-179.
Zhou Z L,Zhou M,Gong A H,Zhang Y,Li Q J.Talanta,2015,143:107-113.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构