1.中南民族大学 化学与材料科学学院,湖北 武汉 430074
2.中南民族大学 分析化学国家民委重点实验室,湖北 武汉 430074
李海燕,教授,研究方向:有机污染物降解技术及其降解产物的分析,E-mail:echohyIi@163.com
扫 描 看 全 文
付宇超,杨珍,李吟霜等.反相可切换亲水性溶剂液-液微萃取/电感耦合等离子体质谱法测定变压器油中铜和铁离子含量[J].分析测试学报,2022,41(07):1078-1083.
FU Yu-chao,YANG Zhen,LI Yin-shuang,et al.Determination of Contents of Copper and Iron Ions in Transformer Oil by Inductively Coupled Plasma Mass Spectrometry with Reversed Phase Switchable Hydrophilic Solvent Liquid-Liquid Microextraction[J].Journal of Instrumental Analysis,2022,41(07):1078-1083.
付宇超,杨珍,李吟霜等.反相可切换亲水性溶剂液-液微萃取/电感耦合等离子体质谱法测定变压器油中铜和铁离子含量[J].分析测试学报,2022,41(07):1078-1083. DOI: 10.19969/j.fxcsxb.21110102.
FU Yu-chao,YANG Zhen,LI Yin-shuang,et al.Determination of Contents of Copper and Iron Ions in Transformer Oil by Inductively Coupled Plasma Mass Spectrometry with Reversed Phase Switchable Hydrophilic Solvent Liquid-Liquid Microextraction[J].Journal of Instrumental Analysis,2022,41(07):1078-1083. DOI: 10.19969/j.fxcsxb.21110102.
以电感耦合等离子体质谱(ICP-MS)为检测手段,研究了反相可切换亲水性溶剂液-液微萃取(SHS-LLME)同时分离富集变压器绝缘油中Cu,2+,和Fe,3+,的方法。优化的萃取条件为:以50 µL三乙胺(TEA)萃取25 mL变压器油样,0.60 mol/L硝酸溶液为触发剂,TEA和HNO,3,摩尔比为1∶1.5,涡旋萃取反应5 min,亲水切换反应5 min,经离心分离后,取水萃取相直接进样测定。变压器油中Cu,2+,和Fe,3+,的质量浓度在0.100~10.0 µg/L范围内线性关系良好,线性系数(,r,2,),均为0.999 6,检出限分别为16.8 ng/L和29.0 ng/L,富集倍数分别为23.7和24.1倍。对模拟老化变压器油样中Cu,2+,和Fe,3+,的含量进行测定,其加标回收率为93.3%~112%,相对标准偏差(,n ,= 6)为3.6%~5.6%。该文所建立的样品前处理方法与现行标准所用的灰化法无显著性差异,可实现老化变压器油中痕量Cu,2+,和Fe,3+,的同时测定。
Increase in the concentration of metal copper and iron ions in the insulation oil for running transformer not only leads to the deepening of the corrosion of the high-voltage copper windings and iron cores immersed in the transformer oil and reduction of insulation performance of the transformer oil,but also causes the increase in the insulation aging ability of transformer oil-paper of metal ion catalysis.In order to track the concentration of copper and iron ions in the transformer oil in operation,and reduce sudden transformer insulation failures caused by the accelerated aging of transformer oil-paper insulation,an inductively coupled plasma mass spectrometry(ICP-MS) with reverse phase switchable hydrophilic solvent liquid-liquid microextraction was developed for the simultaneous separation,enrichment and determination of Cu,2+, and Fe,3+, in transformer insulating oil.The switchable hydrophilic solvent triethylamine(TEA) was used as the extractant,and nitric acid solution was used as the trigger. The extraction conditions were optimized as follows:50 µL of TEA was used to extract 25 mL of transformer oil sample,the molar ratio of TEA to HNO,3, was 1∶1.5,the concentration of HNO,3, was 0.60 mol/L,the reaction time of vortex extraction and the hydrophilicity switching reaction were both 5 min,the lower water extract phase could be directly injected for determination after centrifugation was performed at 4 500 r/min for 5 min. There were good linearities for Cu,2+, and Fe,3+, in the range of 0.100-10.0 µg/L,with their correlation coefficients(,r,2,) of 0.999 6.The detection limits for Cu,2+, and Fe,3+ ,were 16.8 ng/L and 29.0 ng/L,respectively,and the enrichment factors were about 24 times.The concentration of Cu,2+, and Fe,3+, in the oil samples of the simulated aging transformer were determined.And the spiked recoveries of Cu,2+, and Fe,3+, ranged from 93.3% to 112%,with relative standard deviations(RSDs) of 3.6%-5.6%.There is no significant difference between the sample pretreatment method established in this paper and the ashing method used in the current standard,and it is helpful for the online tracking determination of trace Cu,2+, and Fe,3+, in the operating transformer insulating oil.
反相可切换亲水性溶剂液-液微萃取铜和铁离子变压器油电感耦合等离子体质谱(ICP-MS)
reversed phase switchable hydrophilicity solventliquid-liquid microextractioncopper and iron ionstransformer oilinductively coupled plasma mass spectrometry(ICP-MS)
Rehman S,Alhems L M,Jadim R,Al Faraj B A,Al Mutairi K S,Al-Yemni A K.IEEE Trans. Dielectr. Electr. Insul.,2017,24(5):3201-3206.
Liang Y C,Liao R J,Yuan Y,Mo Y,Xiang M.High Voltage Eng. (梁宁川,廖瑞金,袁媛,莫洋,项敏.高电压技术),2020,46(2):666-672.
Dukhi V,Bissessur A,Martincigh B S.Ind. Eng. Chem. Res.,2016,55(11):2911-2920.
Wang D,Zhang L,Zhu Z P,Su W,Chen T S,Fan S P.High Voltage Eng. (王灯,张丽,朱志平,苏伟,陈天生,范圣平.高电压技术),2019,45(9):2954-2963.
He D L,Li P,Hu J,Wen T.Adsorpt. Sci. Technol.,2019,37(5/6):480-491.
Sevastyanova O,Pasalskiy B,Zhmud B.Engineering,2015,7(8):514-529.
Qian Y H,Yao J W,Li Z.Transformer(钱艺华,姚唯建,李智.变压器),2011,48(1):44-46.
Yu X L,He Y,An Y,Li A,Jia Y C.Electr. Eng. (于鲜莉,贺宇,安燕,李昂,贾彦昌.电工技术),2021,(6):51-52,55.
Qian H,Hu X,Shen J L.Hunan Electr. Power(钱晖,胡旭,申积良.湖南电力),2007,(5):14-16.
Hu X,Qian H. Hunan Electr. Power(胡旭,钱晖.湖南电力),2009,29(3):29-30,35.
Unnikrishnan B,Lien C W,Chu H W,Huang C C.J. Hazard. Mater.,2021,401:123397.
Li N,Du J J,Wu D,Li J C,Li N,Sun Z W,Li G L,Wu Y N.TrAC,Trends Anal. Chem.,2018,108:154-166.
He M,Huang L J,Zhao B S,Chen B B,Hu B.Anal. Chim. Acta,2017,973:1-24.
Zhu Q,Long B H,Chen X H,Yan X,Zhu H N,Feng J,Xu W L,Wang Z B.J. Instrum. Anal. 朱清,龙冰华,陈星航,闫徐,朱红年,冯吉,徐尉力,王志兵.分析测试学报),2021,40(10):1467-1473.
Adhami K,Asadollahzadeh H,Ghazizadeh M.J. Food Compos. Anal.,2020,89:103457.
Soylak M,Koksal M.Microchem. J.,2019,147:832-837.
Jia L Y,Huang X,Zhao W F,Wang H H,Jing X.Food Chem.,2020,317:126424.
Lasarte-Aragonés G,Lucena R,Cárdenas S,Valcárcel M.Talanta,2015,131:645-649.
Hassan M,Uzcan F,Alshana U,Soylak M.Food Chem.,2021,348:129053.
Atsever N,Borahan T,Bakırdere G,Bakırdere S.J. Pharm. Biomed. Anal.,2020,186:113274.
Xu F M,Li H B,Wei W L,Liu L Y,Li Q.Chin. J. Chromatogr. (徐仿敏,李海波,魏万里,刘凌云,李强.色谱),2018,36(10):1067-1072.
Heydari F,Ramezani M.J. Anal. Chem.,2019,74(11):1081-1088.
Hassan M,Erbas Z,Alshana U,Soylak M.Microchem. J.,2020,156:104868.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构