南京大学 化学化工学院 生命分析化学国家重点实验室,江苏 南京 210023
闵乾昊,博士,副教授,研究方向:纳米生物分析与质谱分析,E-mail: minqianhao@nju.edu.cn
扫 描 看 全 文
卢威风,张雪萌,闵乾昊.电化学过程原位质谱分析研究进展[J].分析测试学报,2022,41(01):11-21.
LU Wei-feng,ZHANG Xue-meng,MIN Qian-hao.Advances in In-situ Analysis of Electrochemical Processes by Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(01):11-21.
卢威风,张雪萌,闵乾昊.电化学过程原位质谱分析研究进展[J].分析测试学报,2022,41(01):11-21. DOI: 10.19969/j.fxcsxb.21092907.
LU Wei-feng,ZHANG Xue-meng,MIN Qian-hao.Advances in In-situ Analysis of Electrochemical Processes by Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(01):11-21. DOI: 10.19969/j.fxcsxb.21092907.
质谱分析法以其灵敏度高、特异性强、分析通量高等特点,近年来已逐步用于电化学反应过程的原位监测和机理探究。通过开发新型电离源以及构建电化学池-质谱偶联装置,研究者们相继发展了一系列电化学质谱(EC-MS)分析方法,并在电化学过程产物实时监测、同位素标记分析、短寿命中间体捕获鉴定等方面展现出了特有的技术优势。该综述从气相及挥发性产物分析、液相产物分析和短寿命中间体捕获三方面介绍了EC-MS近五年来在方法学方面的研究进展,并回顾了这期间EC-MS在电催化过程产物监测和电化学反应机理研究中的应用。
With the merits of high sensitivity,specificity,and analytical throughput,mass spectrometry has been recently applied to in-situ monitoring and mechanistic studies of electrochemical reaction processes.In the past decades,a series of electrochemical mass spectrometry(EC-MS) analysis methods have been developed by advancing novel ionization sources and interfacing electrochemical cell with mass spectrometers,which have exhibited excellent performance in the real-time monitoring of electrochemical processes,isotope labeling analysis,capture short-lived intermediates and other aspects.In this review,the methodological progress of EC-MS in the past five years is reviewed in three aspects:gas and volatile product analysis,liquid product analysis and short-lived intermediates identification.The applications of EC-MS in the monitoring of electrocatalytical systems and mechanistic studies of electrochemical reactions are also summarized.
电化学质谱(EC-MS)原位分析机理研究电催化
electrochemical mass spectrometry(EC-MS)in-situ analysismechanistic studyelectrocatalysis
Novaes L F T,Liu J J,Shen Y F,Lu L X,Meinhardt J M,Lin S.Chem. Soc. Rev.,2021,50(14):7941-8002.
Yan M,Kawamata Y,Baran P S.Chem. Rev.,2017,117(21):13230-13319.
Yang Y,Xiong Y,Zeng R,Lu X Y,Krumov M,Huang X,Xu W X,Wang H S,DiSalvo F J,Brock J D,Muller D A,Abruña H D.ACS Catal.,2021,11(3):1136-1178.
Hui J S,Gossage Z T,Sarbapalli D,Hernandez-Burgos K,Rodriguez-Lopez J.Anal. Chem.,2019,91(1):60-83.
Tripathi A M,Su W N,Hwang B J.Chem. Soc. Rev.,2018,47(3):736-851.
Jurva U,Weidolf L.TrAC,Trends Anal. Chem.,2015,70:92-99.
Chen W,Yu A,Sun Z J,Zhu B Q,Cai J,Chen Y X.Curr. Opin. Eletrochem.,2019,14:113-123.
Li X X,Blinn K,Chen D C,Liu M L.Electrochem. Energy Rev.,2018,1(3):433-459.
Saveleva V A,Savinova E R.Curr. Opin. Eletrochem.,2019,17:79-89.
Hwang S,Chen X B,Zhou G W,Su D.Adv. Energy Mater.,2020,10(11):1902105.
Lu J,Hua X,Long Y T.Analyst,2017,142(5):691-699.
Bruckenstein S,Rao Gadde R.J. Am. Chem. Soc.,1971,93(3):793-794.
Wolter O,Heitbaum J.Berichte Der Bunsen-Gesellschaft-Phys. Chem. Chem. Phys.,1984,88(1):2-6.
Hambitzer G,Heitbaum J.Anal. Chem.,1986,58(6):1067-1070.
Bartmess J E,Phillips L R.Anal. Chem.,1987,59(15):2012-2014.
Liu P Y,Lu M,Zheng Q L,Zhang Y,Dewald H D,Chen H.Analyst,2013,138(19):5519-5539.
Bruins A P.TrAC, Trends Anal. Chem.,2015,70:14-19.
Freitas D,Chen X,Cheng H,Davis A,Fallon B,Yan X.ChemPlusChem,2021,86(3):434-445.
Volk K J,Yost R A,Brajtertoth A.J. Chromatogr.,1989,474(1):231-243.
Scholz R,Matysik F M.Analyst,2011,136(8):1562-1565.
Lohmann W,Baumann A,Karst U.Lc Gc North America,2010,28(6):470-478.
Cindric M,Matysik F M.TrAC, Trends Anal. Chem.,2015,70:122-127.
Herl T,Matysik F M.ChemElectroChem,2020,7(12):2498-2512.
Clark E L,Singh M R,Kwon Y,Bell A T.Anal. Chem.,2015,87(15):8013-8020.
Clark E L,Bell A T.J. Am. Chem. Soc.,2018,140(22):7012-7020.
Amin H M A,Konigshoven P,Hegemann M,Baltruschat H.Anal. Chem.,2019,91(20):12653-12660.
Bawol P P,Reinsberg P H,Baltruschat H.Anal. Chem.,2018,90(24):14145-14149.
Mostafa E,Baltruschat H,Garcia-Segura S.Electrochim. Acta,2021,387:138521
Berkes B B,Jozwiuk A,Vracar M,Sommer H,Brezesinski T,Janek J.Anal. Chem.,2015,87(12):5878-5883.
Svengren H,Chamoun M,Grins J,Johnsson M.ChemElectroChem,2018,5(1):44-50.
Niether C,Rau M S,Cremers C,Jones D J,Pinkwart K,Tübke J.J. Electroanal. Chem.,2015,747:97-103.
Jurzinsky T,Kurzhals P,Cremers C.J. Power Sources,2018,389:61-69.
Hasa B,Jouny M,Ko B H,Xu B,Jiao F.Angew. Chem. Int. Ed. Engl.,2021,60(6):3277-3282.
Keller J,Haase H,Koch M.Anal. Bioanal. Chem.,2017,409(16):4037-4045.
Xu J Q,Zhu T G,Chingin K,Liu Y H,Zhang H,Chen H W.Anal. Chem.,2018,90(23):13832-13836.
Iftikhar I,El-Nour K M A,Brajter-Toth A.ChemElectroChem,2018,5(7):1056-1063.
Van den Brink F T,Buter L,Odijk M,Olthuis W,Karst U,Van den Berg A.Anal. Chem.,2015,87(3):1527-1535.
Van den Brink F T,Zhang T,Ma L,Bomer J,Odijk M,Olthuis W,Permentier H P,Bischoff R,Van den Berg A.Anal. Chem.,2016,88(18):9190-9198.
Liu S J,Yu Z W,Qiao L,Liu B H.Sci. Rep.,2017,7:46669.
Trojanek A,Langmaier J,Zalis S,Samec Z.Electrochim. Acta,2013,110:816-821.
Cai Y,Liu P,Held M A,Dewald H D,Chen H.ChemPhysChem,2016,17(8):1104-1108.
Looi W D,Brown B,Chamand L,Brajter-Toth A.Anal. Bioanal. Chem.,2016,408(9):2227-2238.
Zhang X M,Wang W,Zare R N,Min Q H.Chem. Sci.,2021,12(32):10810-10816.
Liu P,Lanekoff I T,Laskin J,Dewald H D,Chen H.Anal. Chem.,2012,84(13):5737-5743.
Khanipour P,Loffler M,Reichert A M,Haase F T,Mayrhofer K J J,Katsounaros I.Angew. Chem. Int. Ed. Engl.,2019,58(22):7273-7277.
Khanipour P,Haschke S,Bachmann J,Mayrhofer K J J,Katsounaros I.Electrochim. Acta,2019,315:67-74.
Brown T A,Chen H,Zare R N.J. Am. Chem. Soc.,2015,137(23):7274-7277.
Brown T A,Chen H,Zare R N.Angew. Chem. Int. Ed. Engl.,2015,54(38):11183-11185.
Brown T A,Hosseini-Nassab N,Chen H,Zare R N.Chem. Sci.,2016,7(1):329-332.
Cheng H,Yan X,Zare R N.Anal. Chem.,2017,89(5):3191-3198.
Yu K,Zhang H,He J,Zare R N,Wang Y Y,Li L,Li N,Zhang D M,Jiang J.Anal. Chem.,2018,90(12):7154-7157.
Wan Q,Chen S,Badu-Tawiah A K.Chem. Sci.,2018,9(26):5724-5729.
Cheng H Y,Tang S L,Yang T Y,Xu S Q,Yan X.Angew. Chem. Int. Ed. Engl.,2020,59(45):19862-19867.
Qiu R,Zhang X,Luo H,Shao Y H.Chem. Sci.,2016,7(11):6684-6688.
Gu C Y,Nie X,Jiang J Z,Chen Z F,Dong Y Z,Zhang X,Liu J J,Yu Z Y,Zhu Z W,Liu J,Liu X Y,Shao Y H.J. Am. Chem. Soc.,2019,141(33):13212-13221.
Hu J,Zhang N,Zhang P K,Chen Y,Xia X H,Chen H Y,Xu J J.Angew. Chem. Int. Ed. Engl.,2020,59(41):18244-18248.
Hu J,Wang T,Zhang W J,Hao H,Yu Q,Gao H,Zhang N,Chen Y,Xia X H,Chen H Y,Xu J J.Angew. Chem. Int. Ed. Engl.,2021,60(34):18494-18498.
Wang Y,Lu Y C.Angew. Chem. Int. Ed. Engl.,2019,58(21):6962-6966.
Kaufman L A,McCloskey B D.Chem. Mater.,2021,33(11):4170-4176.
Nishioka K,Morimoto K,Kusumoto T,Harada T,Kamiya K,Mukouyama Y,Nakanishi S.J. Am. Chem. Soc.,2021,143(19):7394-7401.
Robert R,Bünzli C,Berg E J,Novák P.Chem. Mater.,2015,27(2):526-536.
Lysgaard S,Christensen M K,Hansen H A,Garcia Lastra J M,Norby P,Vegge T.ChemSusChem,2018,11(12):1933-1941.
Moller S,Barwe S,Masa J,Wintrich D,Seisel S,Baltruschat H,Schuhmann W.Angew. Chem. Int. Ed. Engl.,2020,59(4):1585-1589.
Kasian O,Grote J P,Geiger S,Cherevko S,Mayrhofer K J J.Angew. Chem. Int. Ed. Engl.,2018,57(9):2488-2491.
Todoroki N,Tei H,Tsurumaki H,Miyakawa T,Inoue T,Wadayama T.ACS Catal.,2019,9(2):1383-1388.
Yao Y,Zhu S Q,Wang H J,Li H,Shao M H.Angew. Chem. Int. Ed. Engl.,2020,59(26):10479-10483.
Zeng R,Yang Y,Shen T,Wang H S,Xiong Y,Zhu J,Wang D L,Abruña H D.ACS Catal.,2020,10(1):770-776.
Liu J L,Yu K,Zhang H,He J,Jiang J,Luo H.Chem. Sci.,2021,12(27):9494-9499.
Liu C Y,Wang Q,Hivick B E,Ai Y L,Champagne P A,Pan Y,Chen H.Anal. Chem.,2020,92(23):15291-15296.
Wang Q,Wang Q L,Zhang Y X,Mohamed Y M,Pacheco C,Zheng N,Zare R N,Chen H.Chem. Sci.,2020,12(3):969-975.
Willms J A,Gleich H,Schrempp M,Menche D,Engeser M.Chem. Eur. J.,2018,24(11):2663-2668.
Hulsey M J,Sun G,Sautet P,Yan N.Angew. Chem. Int. Ed. Engl.,2021,60(9):4764-4773.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构