1.国科大杭州高等研究院(UCAS) 环境学院,浙江 杭州 310024
2.中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室,北京 100083
3.中国科学院大学,北京 100049
4.中粮营养健康研究院,营养健康与食品安全北京市重点实验室,北京 102209
史亚利,博士,研究员,研究方向:新型污染物的色谱-质谱分析方法、环境行为以及人体暴露研究,E-mail:shiyali@rcees.ac.cn
扫 描 看 全 文
张博钠,侯敏敏,钱承敬等.超高效液相色谱-串联质谱法测定粮食中有机磷酸酯及其二酯代谢物[J].分析测试学报,2022,41(01):91-99.
ZHANG Bo⁃na,HOU Min⁃min,QIAN Cheng⁃jing,et al.Determination of Organophosphate Esters and Their Diester Metabolites in Cereals by Ultra⁃high Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(01):91-99.
张博钠,侯敏敏,钱承敬等.超高效液相色谱-串联质谱法测定粮食中有机磷酸酯及其二酯代谢物[J].分析测试学报,2022,41(01):91-99. DOI: 10.19969/j.fxcsxb.21092804.
ZHANG Bo⁃na,HOU Min⁃min,QIAN Cheng⁃jing,et al.Determination of Organophosphate Esters and Their Diester Metabolites in Cereals by Ultra⁃high Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(01):91-99. DOI: 10.19969/j.fxcsxb.21092804.
建立了粮食样品中14种有机磷酸酯(OPEs)及其8种二酯代谢物(di-OPEs)的超高效液相色谱-串联质谱分析方法(UPLC-MS/MS)。样品以甲醇为溶剂超声萃取后,直接加载到活化后的ENVI-18固相萃取柱中,萃取液用5 mL甲醇洗脱,合并洗脱液氮吹定容后进样分析,采用内标法定量。22种目标物在0.1~20 μg/L范围内线性关系良好(,r ,>, 0.99),方法检出限(,S/N, = 3)为0.005 02~1.94 ng/g,定量下限(,S/N, = 10)为0.016 7~6.45 ng/g;除磷酸二丁氧酯(BBOEP)的加标回收率为141%外,其它目标物的回收率为60.0%~131%,相对标准偏差为0.57%~22%。采用该方法对25个小麦样品进行测定,14种OPEs的总含量为0.843~23.5 ng/g,其中4种OPEs在全部样品中均检出,磷酸三(1-氯-2-丙基)酯(TCIPP)是主要物质;8种di-OPEs的总含量为0.126~4.81 ng/g,其中4种di⁃OPEs的检出率高于50%,磷酸二(2-乙基己基)酯(BEHP)是主要物质。结果表明,有机磷酸酯及其二酯代谢物在粮食样品中普遍存在。暴露估算结果显示,我国成年人和儿童通过食用小麦对OPEs的暴露量分别为4.23~118 ng/kg bw/day和5.56~155 ng/kg bw/day;对di-OPEs的暴露量分别为0.633~24.2 ng/kg bw/day和0.832~31.7 ng/kg bw/day。整体上,通过小麦摄入的暴露量远低于各OPEs的人体口服参考剂量,但考虑到小麦的加工运输过程可能引入更多OPEs及其代谢物,同时还存在其他种类饮食的暴露,人体通过饮食对OPEs及di-OPEs的暴露应引起重视。
An ultra⁃high performance liquid chromatography-tandem mass spectrometric(UPLC-MS/MS) method was developed for the detection of 14 organophosphate esters(OPEs) and their 8 diester metabolites(di-OPEs) in cereal samples in this paper,and the pre⁃treatment process of purification was optimized.The cereal samples were ultrasonically extracted with methanol three times,and then purified directly with ENVI-18 cartridges without solvent conversion and eluted with 5 mL methanol.The combined eluent was concentrated under nitrogen.Finally,the analytes were analyzed by UPLC-MS/MS and quantified by the internal standard method.The analytes were separated on an Acquity UPLC BEH C,18, column by gradient elution using methanol and 5 mmol/L ammonium acetate aqueous solution as mobile phases,and ionized in electrospray ionization positive mode for OPEs and negative mode for di-OPEs under the multiple reaction monitoring(MRM) mode.Results showed that there were good linear relationships for all compounds in the range of 0.1-20 μg/L,with their correlation coefficients(,r,) greater than 0.99.The detection limits(LOD) and quantitation limits(LOQ) for OPEs and di⁃OPEs were in the range of 0.005 02-1.94 ng/g and 0.016 7-6.45 ng/g,respectively.The average recoveries(,n, = 3) for 22 compounds in cereal samples at three spiked levels of 5,10 and 20 ng/g ranged from 60.0% to 131% except BBOEP(141%),with relative standard deviations(RSD) of 0.57%-22%.The optimized method was applied to the quantitation of OPEs and di-OPEs in 25 wheat samples.The total contents of 14 OPEs were in the range of 0.843-23.5 ng/g.Four OPEs(TEP,TCEP,TCIPP and EHDPP) were detected in all samples,while TCIPP was the main OPEs.The total contents of 8 di-OPEs were in the range of 0.126-4.81 ng/g,and the detection frequencies for 4 di⁃OPEs(DBP,DPHP,BEHP and BDCPP) were higher than 50%,while BEHP was the main di⁃OPEs.These results indicated that these OPEs and di⁃OPEs were widespread in cereal samples.Based on the measured OPEs and di-OPEs contents, the estimated daily intakes(EDIs) of Σ,14,OPEs via cereal intake were in the range of 4.23-118 ng/kg bw/day and 5.56-155 ng/kg bw/day for Chinese adults and children,respectively.The daily intake of 8 di-OPEs were in the range of 0.633-24.2 ng/kg bw/day and 0.832-31.7 ng/kg bw/day for adults and children,respectively.Overall,the EDIs through wheat intake were much lower than the Reference Dose(RfD) of OPEs.However,considering that the processing and transportation may introduce more OPEs and their metabolites into the wheat and there exists the possibility of other food contaminated by OPEs or di-OPEs,the human exposure to OPEs and di-OPEs through diet should be concerned.
有机磷酸酯超高效液相色谱-串联质谱粮食固相萃取
organophosphate esterultra-high performance liquid chromatography-tandem mass spectrometrycerealsolid phase extraction
Wei G L,Li D Q,Zhuo M N,Liao Y S,Xie Z Y,Guo T L,Li J J,Zhang S Y,Liang Z Q.Environ. Pollut.,2015,196:29-46.
Kim U J,Kannan K.Environ. Sci. Technol.,2018,52:5625-5633.
Okeme J O,Yang C,Abdollahi A,Dhal S,Harris S A,Jantunen L M,Tsirlin D,Diamond M L.Environ. Pollut.,2018,239:109-117.
Tan H L,Chen D,Peng C F,Liu X T,Wu Y,Li X,Du R,Wang B,Guo Y,Zeng E Y.Environ. Sci. Technol.,2018,52:11017-11026.
Alkan N,Alkan A,Castro-Jimenez J,Royer F,Papillon L,Ourgaud M,Sempere R.Sci. Total Environ.,2021,760:143412.
Wan W N,Zhang S Z,Huang H L,Wu T.Environ. Pollut.,2016,214:349-353.
Bekele T G,Zhao H X,Wang Q Z.J. Hazard. Mater.,2021,401:123410.
Li P,Jin J,Wang Y,Hu J C,Xu M,Sun Y M,Ma Y L.Chemosphere,2017,171:654-660.
Shi Q P,Wang M,Shi F Q,Yang L H,Guo Y Y,Feng C L,Liu J F,Zhou B S.Aquat. Toxicol.,2018,203:80-87.
Zhu Y,Ma X F,Su G Y,Yu L Q,Letcher R J,Hou J,Yu H X,Giesy J P,Liu C S.Environ. Sci. Technol.,2015,49:14579-14587.
Peng B,Yu Z M,Wu C C,Liu L Y,Zeng L,Zeng E Y.Environ. Int.,2020,135:105348.
Fernie K J,Palace V,Peters L E,Basu N,Letcher R J,Karouna-Renier N K,Schultz S L,Lazarus R S,Rattner B A.Environ. Sci. Technol.,2015,49:7448-7455.
Bekele T G,Zhao H X,Yang J,Chegen R G,Chen J W,Mekonen S,Qadeer A.Environ. Sci. Pollut. Res. Int.,2021,28:49507-49528.
Zhang X L,Zou W,Mu L,Chen Y M,Ren C X,Hu X G,Zhou Q X.J. Hazard. Mater.,2016,318:686-693.
Ding J J,Deng T Q,Xu M M,Wang S,Yang F X.Environ. Pollut.,2018,233:986-991.
Xu F,Tay J H,Covaci A,Padilla⁃Sanchez J A,Papadopoulou E,Haug L S,Neels H,Sellstrom U,de Wit C A. Environ. Int.,2017,102:236-243.
Zhang L H,Zhu Y,Li Z R,Li L Z,Liu Y E,Chen X C,Yu Y J.Environ. Chem. 张洛红,朱钰,李宗睿,李良忠,刘银娥,陈希超,于云江.环境化学),2021,40(8):1-16.
Li C X,Zhao X L,Gao L H,Shi Y L,Tan W Q,Cai Y Q.J. Instrum. Anal. (李闯修,赵晓丽,高立红,史亚利,谭伟强,蔡亚岐.分析测试学报),2016,35(2):194-199.
Hou R,Liu C,Gao X Z,Xu Y P,Zha J M,Wang Z J.Environ. Pollut.,2017,229:548-556.
He C,Wang X Y,Tang S Y,Thai P,Li Z R,Baduel C,Mueller J F.Environ. Sci. Technol.,2018,52:12765-12773.
Van den Eede N,Heffernan A L,Aylward L L,Hobson P,Neels H,Mueller J F,Covaci A.Environ. Int.,2015,74:1-8.
Gong X Y,Wang Y,Pu J,Zhang J J,Sun H W,Wang L.Environ. Int.,2020,135:105405.
Sang Y Z,Li W H,Liu J M,Qu C,Zhao Y J,Cai H M,Hong S C.J. Instrum. Anal. 桑永珠,厉文辉,刘杰民,曲琛,赵研君,蔡寒梅,洪思程.分析测试学报),2020,39(12):1538-1543.
National Bureau of Statistics of China. China Statistical Yearbook(中国国家统计局.中国统计年鉴)[2021-09-25].http: //www. stats. gov. cn/tjsj/ndsj/2021/indexch.htmhttp://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm.
Ding J J,Deng T Q,Xu M M,Wang S,Yang F X.Environ. Pollut.,2018,233:986-991.
0
浏览量
5
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构