1.延安大学 医学院,陕西 延安 716000
2.延安大学 化学与化工学院,延安市分析技术与 检测重点实验室,陕西 延安 716000
张越诚,博士,讲师,研究方向:生化分析,E-mail:yuechengzhang@outlook.com
马红燕,硕士,教授,研究方向:发光分析,E-mail:Mahy6614@163.com
扫 描 看 全 文
孙凌波,武文波,王清清等.扁豆碳量子点/异硫氰酸荧光素比率荧光探针测定氯诺昔康的研究[J].分析测试学报,2022,41(05):710-716.
SUN Ling-bo,WU Wen-bo,WANG Qing-qing,et al.Detection of Lornoxicam by Using a Novel Hyacinth Beans Carbon Quantum Dots/Fluorescein Isothiocyanate Based Radiometric Probe[J].Journal of Instrumental Analysis,2022,41(05):710-716.
孙凌波,武文波,王清清等.扁豆碳量子点/异硫氰酸荧光素比率荧光探针测定氯诺昔康的研究[J].分析测试学报,2022,41(05):710-716. DOI: 10.19969/j.fxcsxb.21091604.
SUN Ling-bo,WU Wen-bo,WANG Qing-qing,et al.Detection of Lornoxicam by Using a Novel Hyacinth Beans Carbon Quantum Dots/Fluorescein Isothiocyanate Based Radiometric Probe[J].Journal of Instrumental Analysis,2022,41(05):710-716. DOI: 10.19969/j.fxcsxb.21091604.
以天然生物质扁豆为唯一碳源,一步水热法合成了荧光性能优良、水溶性好的扁豆CQDs(HB-CQDs)。在pH 5.80的HAc-NaAc 缓冲溶液中,该HB-CQDs可与异硫氰酸荧光素(FITC)复合,在,λ,ex, =326 nm单一波长激发下,HB-CQDs/FITC复合物于400 nm和510 nm处呈现两个独立的荧光峰。MnO,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247675&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247672&type=,1.10066664,3.72533321,的加入可使该两处的荧光信号发生明显猝灭,信号“关闭”;加入氯诺昔康(LNXC)后,510 nm 波长处的信号重新“开启”,荧光恢复;而400 nm处的荧光强度维持不变,由此构建了基于HB-CQDs/FITC双发射比率荧光探针测定LNXC的新方法。实验探讨了MnO,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247662&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247658&type=,1.10066664,3.72533321,对HB-CQDs/FITC探针的荧光猝灭机理。对体系分析特性进行了优化,LNXC在1.0 × 10,-7,~1.0 × 10,-5, mol/L浓度范围内与探针HB-CQDs/FITC于510 nm和400 nm两处的荧光强度比值(,I,510 nm/400 nm,)有良好的线性关系,检出限为9.0 × 10,-8, mol/L(3,σ/k,)。此探针可用于实际样品中LNXC 的测定。
A novel hyacinth beans carbon quantum dots(HB-CQDs) with nature hyacinth beans as the single carbon source were synthesized by hydrothermal method,which exhibit excellent fluorescent properties and water solubility.Fluorescein isothiocyanate(FITC) was composited with HB-CQDs in HAc-NaAc buffer(pH = 5.80) to form HB-CQDs/FITC composites,which could clearly show two fluorescence emission peaks at 400 nm and 510 nm under the single excitation wavelength of 326 nm,whereas both fluorescence signals were“switch off”after MnO,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247675&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247672&type=,1.10066664,3.72533321, was added into the system.With the addition of lornoxicam(LNXC),the fluorescence signal at 510 nm was restored,which makes the fluorescence signal“switch on”again,even though the fluorescence intensity at 400 nm was unvaried.Thus,a novel approach for the detection of LNXC based on HB-CQDs/FITC fluorescent ratiometric probe was established.The quenching mechanism of MnO,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247675&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37247672&type=,1.10066664,3.72533321, was further explored.A good linear relationship between the concentration of LNXC and the fluorescence intensity ratio(at ,λ,em,/,λ,em, = 510 nm/400 nm) of HB-CQDs/FITC probe was found under the optimized experimental conditions,with a linear range of 1.0 × 10,-7,-1.0 × 10,-5, mol/L.The detection limit of this method was 9.0 × 10,-8, mol/L. Furthermore,this probe was used in the detection of the content of LNXC in the samples with satisfactory results.
扁豆碳量子点(HB-CQDs)异硫氰酸荧光素(FITC)比率荧光探针氯诺昔康(LNXC)
hyacinth beans carbon quantum dots(HB-CQDs)fluorescein isothiocyanate(FITC)fluorescence ratiometric probelornoxicam(LNXC)
Rasal A S,Yadav S,Yadav A,Kashale A A,Manjunatha S T,Altaee A,Chang J Y.ACS Appl. Nano Mater.,2021,4(7):6515-6541.
Sun Z F,Zhao J,Guo P R,Lei Y Q.J. Instrum. Anal. (孙泽飞,赵健,郭鹏然,雷永乾.分析测试学报),2021,40(12):1736-1743.
Desmond L J,Phan A N,Gentile P.Environ. Sci. Nano,2021,8(4):848-862.
Zhao D L,Chung T S.J. Water Res.,2018,147:43-49.
Farka Z,Juřík T,kovář D,Trnková L,Skládal P.Chem. Rev.,2017,117(15):9973-10042.
Zhou H T,Mei J,Chen Y A,Chen C L,Chen W,Zhang Z Y,Su J H,Chou P T,Tian H.J. Small,2016,12(47):6542-6546.
Li G H,Ma Y Y,Pei M S,Lin W Y.J. Anal. Chem.,2019,91(22):14586-14590.
Wang D C,Lei Y,Jiao W,Liu Y F,Mu C H,Jian X.J. Rare Metals,2021,40(1):3-19.
Ye S L,Huang J J,Luo L,Fu H J,Sun Y M,Shen Y D,Lei H T,Xu Z L.Chin. J. Anal. Chem. (叶松龄,黄佳佳,罗林,傅慧君,孙远明,沈玉栋,雷红涛,徐振林.分析化学),2017,45(10):1571-1581.
Yao Y H,Tian H Y,Pei X L,Chen Y,Zhang W B,Qian J H.J. Instrum. Anal. (姚余华,田海玉,裴晓良,陈扬,张维冰,钱俊红.分析测试学报),2018,37(4):397-403.
Shah H,Nair A B,Shah J,Bharadia P,Al-Dhubiab B E.DARU-J. Pharm. Sci.,2019,27(1):59-70.
Xiao B,Zhao F,Gao Y.Instrum. Sci. Technol.,2016,44(3):282-293.
Qin X X,Zhu X S.J. Supramol. Chem.,2017,29(3):205-214.
Gong A Q.J. Chem. Res. Appl. (龚爱琴.化学研究与应用),2014,26(12):1859-1863.
Zhao F,Zhao W H.J. Fluoresc.,2012,22(1):529-535.
Cao W W,Wang Z P.Pharm. J. Chin. PLA(曹薇薇,王志平.解放军药学学报),2016,32(6):533-537.
Neumann S,Menter C,Mahmoud A S,Segets D,Rafaja D.CrystEngComm,2020,22(21):3644-3655.
Hartley C L,Dempsey J L.J. Chem. Mater.,2021,33(7):2655-2665.
Javed N,O'Carroll D M.J. Nanoscale Adv.,2021,3(1):182-189.
Ding H,Ji Y,Wei J S,Gao Q Y,Zhou Z Y,Xiong H M.J. Mater. Chem. B,2017,5(26):5272-5277.
Li L H,Rao G,Lv X H,Chen R X,Cheng X F,Wang X J,Zeng S Q,Liu X L.J. Biomed. Opt.,2018,23(2):020501-020504.
Wu S S,Li W,Sun Y Q,Zhang X J,Zhuang J L,Hu H,Lei B F,Hu C F,Liu Y L.J. Colloid Interface Sci.,2019,555:607-614.
Li Q Z,Zhou Y H,Chen Y,Lu F,Qian J,Cao S.J. Chin. J. Lumin. (李庆芝,周奕华,陈袁,陆菲,钱俊,曹晟.发光学报),2020,41(5):579-591.
Pritzl S D,Pschunder F,Ehrat F,Bhattacharyya S,Lohmüeller T,Huergo M A,Feldmann J.Nano Lett.,2019,19(6):3886-3891.
Liang Z C,Kang M,Payne G F,Wang X H,Sun R C.ACS Appl. Mater. Interfaces,2016,8(27):17478-17488.
Mao Y Q,Li Z R,Wang J R,Ge F,Tian J X,Li N.J. Instrum. Anal. (毛永强,李卓然,王继仁,葛飞,田金星,李娜.分析测试学报),2015,34(1):96-100.
0
浏览量
5
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构