云南师范大学 化学化工学院,云南 昆明 650500
王帮进,实验师,研究方向:手性识别材料,E-mail:wangbangjin711@163.com
谢生明,教授,研究方向:手性分离材料和色谱手性固定相,E-mail:xieshengming_2006@163.com
扫 描 看 全 文
郭萍,许娜艳,陈吉楷等.核壳复合材料NH2-MIL-125@TPA-COF用于高效液相色谱分离位置异构体[J].分析测试学报,2022,41(05):731-738.
GUO Ping,XU Na-yan,CHEN Ji-kai,et al.Separation of Positional Isomers Using Core-shell Composite NH2-MIL-125@TPA-COF Column with High Performance Liquid Chromatography[J].Journal of Instrumental Analysis,2022,41(05):731-738.
郭萍,许娜艳,陈吉楷等.核壳复合材料NH2-MIL-125@TPA-COF用于高效液相色谱分离位置异构体[J].分析测试学报,2022,41(05):731-738. DOI: 10.19969/j.fxcsxb.21091402.
GUO Ping,XU Na-yan,CHEN Ji-kai,et al.Separation of Positional Isomers Using Core-shell Composite NH2-MIL-125@TPA-COF Column with High Performance Liquid Chromatography[J].Journal of Instrumental Analysis,2022,41(05):731-738. DOI: 10.19969/j.fxcsxb.21091402.
该文通过在金属-有机骨架材料(MOF)NH,2,-MIL-125表面原位生长共价有机骨架材料(COF)TPA-COF,制备了核壳复合材料(MOF@COF)NH,2,-MIL-125@TPA-COF,采用X-射线粉末衍射(PXRD)、红外光谱(FTIR)和扫描电镜(SEM)等手段对该复合材料进行表征,并将其作为固定相成功制备了NH,2,-MIL-125@TPA-COF色谱填充柱(25 cm long × 2.1 mm i.d.)。在正相(正己烷-异丙醇(9∶1))、反相(甲醇-水(9∶1))高效液相色谱(HPLC)条件下,考察了该柱对一系列位置异构体的分离性能。结果表明,该柱在较低的背景压力(60~100 kPa)下对9种位置异构体(溴硝基苯、硝基苯胺、氯苯酚、二硝基苯、碘苯胺、溴苯胺、苯二胺、甲苯胺和氯苯胺)表现出较好的分离能力,其中溴硝基苯、硝基苯胺和二硝基苯能达到基线分离,且最大分离度(,R,s)为9.71。在反相HPLC条件下,邻-溴硝基苯、间-硝基苯胺和邻-氯苯酚的柱效分别为18 424、19 053、12 954 plates·m,-1,。以溴硝基苯为分析物,在正相HPLC条件下,考察了该柱的重现性和稳定性。该柱通过5次重复进样(第50次、第100次、第150次、第200次、第250次),溴硝基苯保留时间和峰面积的相对标准偏差(RSD)分别为0.29%和0.89%,表明所制备的色谱柱具有较好的重现性和稳定性。核壳复合材料NH,2,-MIL-125@TPA-COF作为一种新型的HPLC固定相用于位置异构体分离具有良好的应用前景。
In this work,a core-shell MOF@COF composite,NH,2,-MIL-125@TPA-COF was prepared by immobilizing the COF(TPA-COF) crystals on the surface of MOF(NH,2,-MIL-125) particles through in-situ growth approach.The NH,2,-MIL-125@TPA-COF composite was characterized by powder X-ray diffraction(PXRD),Fourier transform infrared spectroscopy(FTIR) and scanning electronic microscopy(SEM).An HPLC column(25 cm long × 2.1 mm i.d.) was successfully prepared with NH,2,-MIL-125@TPA-COF composite as stationary phase.Under normal-phase(,n,-hexane-isopropanol(9∶1,volume ratio)) and reverse-phase(methanol-water(9∶1,volume ratio)) high performance liquid chromatographic(HPLC) conditions,the separation performance of this column for a series of positional isomers was investigated.The experimental results showed that the NH,2,-MIL-125@TPA-COF packed column exhibited a good separation performance toward 9 positional isomers,i.e. bromonitrobenzene,nitroaniline,chlorophenol,binitrobenzene,iodoaniline,bromaniline,phenylenediamine,toluidine and chloroaniline under a low column backpressure(60-100 kPa),among which bromonitroaniline, nitroaniline and dinitrobenzene could reach the baseline separation on this column,and the highest resolution(,R,s) was 9.71.Under reverse-phase HPLC condition,the column efficiencies of ,o,-bromonitrobenzene,,m,-nitroaniline and ,o,-chlorophenol were 18 424 plates·m,-1,,19 053 plates·m,-1, and 12 954 plates·m,-1,,respectively.Under normal-phase HPLC condition,the reproducibility and stability of this column was investigated using bromonitrobenzene as the analyte.The relative standard deviations(RSD) for retention time and peak area of bromonitrobenzene for five repeated injections(50th injection,100th injection,150th injection,200th injection,and 250th injection,respectively) were 0.29% and 0.89%,respectively. The retention time,selectivity and separation performance of bromonitrobenzene on this column did not change obviously,indicating that the prepared NH,2,-MIL-125@TPA-COF packed column exhibited good reproducibility and stability for HPLC separation of positional isomers.The results indicated that the core-shell composite NH,2,-MIL-125@TPA-COF as a new type of HPLC stationary phase has a good application prospect in the separation of positional isomers.
核壳复合材料位置异构体高效液相色谱固定相分离
core-shell compositespositional isomershigh performance liquid chromatographystationary phaseseparation
Zheng Y C,Wan M J,Zhou J Q,Luo Q R,Gao D,Fu Q F,Zeng J,Zu F J,Wang L J.J. Chromatogr. A,2021,1649:462186.
Chen J,Peng H J,Zhang Z L,Zhang Z Y,Ni R X,Chen Y P,Chen P,Peng J D.Talanta,2021,233:122524.
Li X L,Zhang F M,Fan D Q,Cai H C,Gao L,Wang Q H,Hu Y,Li C.China Meas. Test(李响丽,张凤梅,范多青,蔡昊城,高莉,王庆华,胡燕,李超.中国测试),2021,47(3):76-81.
Sun X W,Wang X,Ji W H.J. Instrum. Anal. (孙晓玮,王晓,纪文华.分析测试学报),2020,39(7):935-940.
Qu Q S,Si Y,Xuan H,Zhang K H,Chen X M,Ding Y,Feng S J,Yu H Q.Microchim. Acta,2017,184:4099-4106.
Li L,Fu S G,Yuan B Y,Xie S M,Yuan L M.J. Instrum. Anal. (李丽,付士国,袁宝燕,谢生明,袁黎明.分析测试学报),2017,36(12):1439-1444.
Guo P,Yuan B Y,Yu Y Y,Zhang J H,Wang B J,Xie S M,Yuan L M.Microchim. Acta,2021,188:292.
Xu N Y,Guo P,Chen J K,Zhang J H,Wang B J,Xie S M,Yuan L M.Talanta,2021,235:122754.
Yu Y Y,Yuan B Y,Xu N Y,Zhang J H,Fu N,Xie S M,Yuan L M.J. Instrum. Anal. 余云艳,袁宝燕,许娜艳,章俊辉,富楠,谢生明,袁黎明.分析测试学报),2020,39(2):167-173.
Heinke L,Tu M,Wannapaiboon S,Fischer R A,Wöll C.Micropor. Mesopor. Mater.,2015,216:200-215.
Lee J,Farha O K,Roberts J,Scheidt K A,Nguyen S T,Hupp J T.Chem. Soc. Rev.,2009,38(5):1450-1459.
Lohse M S,Bein T.Adv. Funct. Mater.,2018,28(33):1705553.
Li Y S,Chen W B,Xing G L,Jiang D L,Chen L.Chem. Soc. Rev.,2020,49:2852-2868.
Zhang H W,Zhu Q Q,Yuan R R,He H M.Sens. Actuators B,2021,329:129144.
Fu J R,Das S,Xing G L,Ben T,Valtchev V,Qiu S L.J. Am. Chem. Soc.,2016,138(24):7673-7680.
Peng Y W,Zhao M T,Chen B,Zhang Z C,Huang Y,Dai F N,Lai Z C,Cui X Y,Tan C L,Zhang H.Adv. Mater.,2018,30(3):1705454.
Sun D R,Jang S W,Yim S J,Ye L,Kim D P.Adv. Funct. Mater.,2018,28(13):1707110.
Zhang F M,Sheng J L,Yang Z D,Sun X J,Tang H L,Lu M,Dong H,Shen F C,Liu J,Lan Y Q.Angew. Chem. Int. Ed.,2018,57:12106-12110.
Zhang L L,Xu C,Chen Y T,Zhang W.Acta Sci. Circumst. (张莉莉,许成,陈元涛,张炜.环境科学学报),2020,40(6):2055-2065.
Peng Y W,Huang Y,Zhu Y H,Chen B,Wang L Y,Lai Z C,Zhang Z C,Zhao M T,Tan C L,Yang N L,Shao F W,Han Y,Zhang H.J. Am. Chem. Soc.,2017,139(25):8698-8704.
Zhao W J,Hu K,Wang C J,Liang S,Niu B L,He L J,Lu K,Ye B X,Zhang S S.J. Chromatogr. A,2012,1223:72-78.
Chen Q,Pan F,Zhu J T.Gansu Sci. Technol. (陈强,潘峰,朱敬涛.甘肃科技),2009,25(3):50-51.
0
浏览量
5
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构