1.中南民族大学 药学院,湖北 武汉 430074
2.中南民族大学 民族药学国家级实验教学示范中心, 湖北 武汉 430074
程寒,博士,副教授,研究方向:药物分析,E-mail:chenghan@mail.scuec.edu.cn
扫 描 看 全 文
施敏,鲍昌昊,马雯雯等.碳纤维超微电极负载金纳米粒子高灵敏检测木犀草素[J].分析测试学报,2022,41(05):739-745.
SHI Min,BAO Chang-hao,MA Wen-wen,et al.Highly Sensitive Detection of Luteolin Using a Gold Nanoparticles Modified Carbon Fiber Microelectrode[J].Journal of Instrumental Analysis,2022,41(05):739-745.
施敏,鲍昌昊,马雯雯等.碳纤维超微电极负载金纳米粒子高灵敏检测木犀草素[J].分析测试学报,2022,41(05):739-745. DOI: 10.19969/j.fxcsxb.21082201.
SHI Min,BAO Chang-hao,MA Wen-wen,et al.Highly Sensitive Detection of Luteolin Using a Gold Nanoparticles Modified Carbon Fiber Microelectrode[J].Journal of Instrumental Analysis,2022,41(05):739-745. DOI: 10.19969/j.fxcsxb.21082201.
该研究建立了木犀草素(Lu)的电化学检测方法,通过柠檬酸三钠还原氯金酸制备了纳米金(AuNPs),并运用一步恒电位沉积法在碳纤维超微电极(CFME)表面电沉积纳米金,研制了一种简单、灵敏检测木犀草素的电化学传感器。采用循环伏安(CV)、电化学交流阻抗(EIS)和差分脉冲伏安(DPV)等方法研究CFME修饰前后对Lu电化学氧化反应的催化性能。结果表明,AuNPs/CFME对Lu的电化学响应催化明显,且AuNPs的最佳修饰时间为30 min。Lu的氧化峰电流在0.01~0.10 μmol/L和0.10~10 μmol/L两个浓度范围内呈良好的线性关系,相关系数(,r,2,)分别为0.994 4和0.995 1,检出限(LOD,,S/N ,= 3)为1.58 nmol/L。该传感器制作简单,且稳定性好、灵敏度高、抗干扰能力强,可实现实际样品独一味胶囊中Lu的定量检测,其加标回收率为96.0%~104%,相对标准偏差(RSD)均小于5.0%,在生物微环境中木犀草素定量分析方面具有良好的应用前景。
An electrochemical method for the determination of luteolin(Lu) was established in this paper.Gold nanoparticles(AuNPs) were prepared by reducing chloroauric acid with trisodium citrate,which was then electrodeposited on the surface of carbon fiber microelectrode(CFME) by one-step potentiostatic deposition. A simple and sensitive electrochemical sensor for the determination of luteolin was constructed.Cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS) and differential pulse voltammetry(DPV) were used to investigate the catalytic performance of the modified electrode for the electrochemical oxidation of luteolin. The results showed that the AuNPs/CFME had an obvious electrocatalytic performance for the detection of luteolin, and the optimal modification time of AuNPs was 30 min. There were good linear relationships between peak currents and luteolin concentrations in the ranges of 0.01-0.10 μmol/L and 0.10-10 μmol/L,with their correlation coefficients(,r,2,) of 0.994 4 and 0.995 1,respectively.The limits of detection(LODs,,S/N ,= 3) were 1.58 nmol/L. With the advantages of simple fabrication,good stability,high sensitivity and excellent anti-interference ability,the developed sensor could be applied to the quantitative determination of luteolin in Kudo capsules.The spiked recoveries for the analyte ranged from 96.0% to 104%,with relative standard deviations(RSDs) less than 5.0%.It had a good application prospect in quantitative analysis of luteolin in biological microenvironment.
木犀草素金纳米粒子(AuNPs)电化学传感器
luteolingold nanoparticles(AuNPs)electrochemical sensor
Yan H M,Wei P P,Song J,Jia X B,Zhang Z H.J. Pharm. Pharmacol.,2016,68(10):1290-1298.
Xu B J,Zhang B H,Yang L T,Zhao F Q,Zeng B Z.Electrochim. Acta,2017,258:1413-1420.
You Z Y,Fu Y F,Xiao A P,Liu L L,Huang S Q.Arab J. Chem.,2021,14:102990.
Xie Y,Zhang T,Chen Y L,Wang Y,Wang L.Talanta,2020,213:12843.
Geng Y F,Yang C,Zhang Y,Tao S N,Mei J,Zhang X C,Sun Y J,Zhao B T.J. Life Sci.,2021,274:119325.
Ali A,Juriyati J,Kharana H,Hazni F M,Abrar A.J. Ethnopharmacol.,2021,275:114120.
Radjassegarin A,Cengiz S,Abih O M.Biocatal. Agric. Biotechnol.,2021,33:101984.
Lin J,Chen D R.The Breast,2021,56(S1):17-90.
Yu R,Chen L,Lan R,Shen R,Li P.Int. J. Antimicrob. Agents,2020,56(2):106012.
Zhu P Y,Chen L Y,Zhao Y L,Gao C Z,Yang J,Liao X L,Liu D,Yang B.J. Mol. Struct.,2021,1237(21):130339.
Tan X,Yang Y,Xu J G,Zhang P,Deng R M,Mao Y G,He J,Chen Y B,Zhang Y,Ding J S,Li H Y,Shen H T,Li X,Dong W L,Chen G.Front. Pharmacol.,2020,10:1551.
Hou M Y,Hu W Z,Wang A S,Xiu Z L,Shi Y S,Hao K X,Sun X S,Cao D,Lu R S,Sun J.Antioxidants,2019,8(10):425-440.
Sheng S J,Zhang L Y,Chen G.Food Chem.,2014,145(1):555-561.
Liu G Y,Zhuang L W,Song D D,Lu C L,Xu X.J. Sep. Sci.,2017,40(2):472-480.
Ma Y M,Kong Y W,Xu J,Deng Y J,Lu M X,Yu R J,Yuan M S,Li T B,Wang J Y.Talanta,2020,208: 12037.
Yu Z Z,Kang T F,Lu L P.J. Instrum. Anal. (于壮壮,康天放,鲁理平.分析测试学报),2020,39(2):182-189.
Yang L L,Wang T T,Bao C H,Shi M,Huang X J,Cheng H.J. Electroanal. Chem.,2021,895:115512.
Li D Y,Li J,Jia X F,Wang E K.Electrochem. Commun.,2014,42:30-33.
Wang H F,Chen W X,Chen Q Y,Liu N,Cheng H J,Li T.J. Electroanal. Chem.,2021,897:115603.
Wang T T,Li Y,Yang L L,Bao C H,Cheng H.Chem. J. Chin. Univ. (王婷婷,李元,杨莉莉,鲍昌昊,程寒.高等学校化学学报),2020,41(1):87-93.
Liao X F,Lai Y F,Ling L S,Zou L.J. Instrum. Anal. (廖小飞,赖余芬,凌连生,邹李.分析测试学报),2021,40(6):816-821.
Yang L L,Wang T T,Bao C H,Cheng H.J. Instrum. Anal. (杨莉莉,王婷婷,鲍昌昊,程寒.分析测试学报),2020,39(3):401-405.
Tian J J,Liang Z X,Hu O,He Q D,Sun D P,Chen Z G.Electrochim. Acta,2021,387:138553.
Philip D.Spectrochim. Acta A,2009,71(1):80-85.
Xu Q,Chen S X,Xu J K,Duan X M,Lu L M,Tian Q Y,Zhang X X,Cai Y,Lu X Y,Rao L M,Yu Y F.J. Electroanal. Chem.,2020,880:114765.
Oleksiy V K,Irina S,Christian A.J. Electroanal. Chem.,2013,688(5):320-327.
Laviron E.J. Electroanal. Chem.,1979,101(1):19-28.
Laviron E.J. Electroanal. Chem.,1974,52(3):355-393.
Tang J,Huang R,Zheng S B,Jiang S X,Yu H,Li Z R,Wang J F.Microchem. J.,2019,145:899-907.
Niu X L,Huang Y,Zhang W L,Yan L J,Wang L K,Li Z F,Sun W.J. Electroanal. Chem.,2020,880:114832.
Xie Y,Zhang T T,Chen Y L,Wang Y,Wang L.Talanta,2020,213:120843.
Xu B J,Zhang B H,Yang L T,Zhao F Q,Zeng B Z.Electrochim. Acta,2017,258:1413-1420.
Tang J,Jin B K.J. Electroanal. Chem.,2016,780:46-52.
Tang J,Huang R,Zheng S B,Jiang S X,Yu H,Li Z R,Wang J F.Microchem. J.,2019,145:899-907.
Wu T X.Guangzhou Chem. Ind. (武庭瑄.广州化工),2018,46(16):114-117.
Gao Y,Li X T,Zhang X L,Ding Y,Yang G J.J. Yangzhou Univ.:Nat. Sci. Ed. (高叶,李晓彤,张晓蕾,丁娅,杨功俊.扬州大学学报:自然科学版),2020,23(1):10-15,43.
Yang T J,Du J,Sun H L,Fu F.Phys. Test. Chem. Anal.:Chem. Anal. (杨铁金,杜江,孙洪力,富菲.理化检验-化学分册),2013,49(11):1355-1359.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构