1.华东理工大学,国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
2.上海市环境科学研究院,国家环境保护城市土壤污染控制与修复工程技术中心,上海 200233
杨洁,博士,正高级工程师,研究方向:土壤和地下水污染防治,E-mail:yangj@saes.sh.cn
扫 描 看 全 文
钱佳浩,朱清禾,万江等.超高效液相色谱-串联质谱法测定土壤中18种全氟和多氟烷基化合物[J].分析测试学报,2022,41(03):319-326.
QIAN Jia-hao,ZHU Qing-he,WAN Jiang,et al.Determination of 18 Perfluorinated and Polyfluoroalkyl Compounds in Soil by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(03):319-326.
钱佳浩,朱清禾,万江等.超高效液相色谱-串联质谱法测定土壤中18种全氟和多氟烷基化合物[J].分析测试学报,2022,41(03):319-326. DOI: 10.19969/j.fxcsxb.21072602.
QIAN Jia-hao,ZHU Qing-he,WAN Jiang,et al.Determination of 18 Perfluorinated and Polyfluoroalkyl Compounds in Soil by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(03):319-326. DOI: 10.19969/j.fxcsxb.21072602.
该文建立了适用于土壤中18种全氟和多氟烷基化合物(PFASs)的固相萃取/超高效液相色谱-串联质谱检测方法,包括14种全氟羧酸、3种全氟磺酸以及1种全氟醚羧酸。通过比较土壤粒径、超声温度、超声时间、固相萃取柱种类以及洗脱液浓度对PFASs提取效率的影响,确定最优前处理条件为:土壤样品过60目筛,在40 ℃下用甲醇超声提取10 min,分离上清液并用氮气浓缩至1~2 mL,加超纯水稀释后过WAX Oasis(150 mg/6 mL)固相萃取柱纯化,用2 mL甲醇和4 mL 0.1%氨水-甲醇对目标物进行洗脱。洗脱液氮吹定容后,采用ACQUITY UPLC BEH C,18,柱以5 mmol/L乙酸铵溶液和甲醇为流动相进行梯度分离,电喷雾电离负离子模式(ESI-)定量分析18种PFASs。结果表明,18种PFASs在0.05~200 μg/L质量浓度范围内线性良好,相关系数(,r,2,)均大于0.996,方法检出限为0.003~0.100 μg/L,定量下限为0.010~0.300 μg/L,样品的加标回收率为76.3%~132%,相对标准偏差(RSD)为0.40%~11%。该方法前处理简单,灵敏度高,可以快速、准确地定量分析包括全氟(2-甲基-3-氧杂己酸)(GenX)在内的18种PFASs含量。
An ultra performance liquid chromatography-tandem mass spectrometry with solid phase extraction was established for the determination of 18 perfluorinated and polyfluoroalkyl compounds(PFASs) in soil,including 14 types of perfluorocarboxylic acids,3 types of perfluorosulfonic acids and 1 perfluoroether carboxylic acid.The extraction procedure for the target pollutants was optimized by comparing extraction conditions,contained soil particle size,ultrasonic temperature,ultrasonic time,types of solid phase extraction column and eluent concentration.The optimal pretreatment conditions were as follows:the soil was sieved through 60 meshes,then ultrasonically extracted at 40 ℃ with methanol for 10 min.Then the supernatant was separated,and condensed to 1-2 mL under N,2,.The target was solved in ultrapure water and purified with a WAX Oasis column(150 mg/6 mL).2 mL methanol and 4 mL methanol containing 0.1% ammonia were applied to the PFASs elution.Eluent was condensed to dryness under N,2,.Finally,the soil sample was concentrated into 1 mL.The target analytes were separated on an ACQUITY UPLC BEH C,18, column using 5 mmol/L ammonium acetate solution and methanol as mobile phases.The negative electrospray ionization (ESI-) was utilized to analyze 18 PFASs. Results showed that there existed good linearity for 18 PFASs in the concentration range of 0.05-200 μg/L with correlation coefficients(,r,2,) greater than 0.996.The detection limits and the quantitation limits of the method were in the ranges of 0.003-0.100 μg/L and 0.010-0.300 μg/L,respectively. The recoveries ranged from 76.3% to 132%,with relative standard deviations(RSDs) of 0.40%-11%.With simple pretreatment and high sensitivity,the method could be applied to the rapid and precise quantification of 18 PFASs including GenX in soils.
全氟和多氟烷基化合物土壤固相萃取超高效液相色谱-串联质谱全氟(2-甲基-3-氧杂己酸)
perfluorinated and polyfluoroalkyl compoundssoilsolid phase extractionultra performance liquid chromatography-tandem mass spectrometryGenX
Chen S Y,Qiu Y L,Zhu Z L,Yeung L W Y.Res. Environ. Sci. (陈诗艳,仇雁翎,朱志良,Leo W Y Yeung.环境科学研究),2021,34(2):468-478.
Brandsma S H,Koekkoek J C,Velzen M J M,Boer J.Chemosphere,2018,220:493-500.
Wang P,Wang T Y,Giesy J P,Lu Y L.Chemosphere,2013,91(6):751-757.
Zhao Z,Tang J H,Mi L J,Tian C G,Zhong G C,Zhang G,Wang S R,Li Q L,Ebinghaus R,Xie Z Y,Sun H W. Sci. Total Environ.,2017,599:114-123.
Chen S,Jiao X C,Gai N,Li X J,Wang X C,Lu G H,Piao H T,Rao Z,Yang Y L.Environ. Pollut.,2016,211:124-131.
Li F,Zhang C J,Qu Y,Chen J,Chen L,Liu Y,Zhou Q.Sci. Total Environ.,2010,408(3):617-623.
Shoeib T,Hassan Y,Rauert C,Harner T.Chemosphere,2016,144:1573-1581.
Wang G H,Lu J J,Li S M,Liu Z L,Chang H S,Xie C B.Environ. Sci. Pollut. Res. Int.,2018,25(25):25486-25495.
Jia B,Liu W,Liu L,Jin Y H,Dai J Y,Ran X R,Zhang Z X,Tsuda S J.Environ. Sci. Technol.,2011,45(19):8075-8080.
Zhu S,Jia J,Rao Z.J. Instrum. Anal. (朱帅,贾静,饶竹.分析测试学报),2018,37(11):1359-1364.
Jia B,Liu W,Liu L,Jin Y H,Ran X R,Zhang Z X.Chemosphere,2010,80(2):123-130.
Xie L N,Zhang H J,Hou S S,Zhu Y.Chin. J. Anal. Chem. (谢琳娜,张海婧,侯沙沙,朱英.分析化学),2019,47(12):1967-1972.
Chen Y J,Zhang B B,Chen G S,Zhao Y G,Wang J K.Chin. J. Anal. Chem. (陈勇杰,张蓓蓓,陈国松,赵永刚,王济奎.分析化学),2019,47(4):533-540.
Wang Z Y,Cousins I T,Scheringer M,Hungerbuehler K.Environ. Int.,2015,75:172-179.
Dalahmeh S,Tirgani S,Komakech A J,Niwagaba C B,Ahrens L.Sci. Total Environ.,2018,631:660-667.
Lan Z H,Zhou M,Yao Y M,Sun H W.J. Agro-Environ. Sci. (兰仲蕙,周萌,姚义鸣,孙红文.农业环境科学学报),2018,37(9):1884-1894.
Zhang T,Sun H W,Alder A C,Gerecke A C,Müller C.Chin. J. Chromatogr. (章涛,孙红文,Alder Alfredo C,Gerecke Andreas C,Müller Claudia.色谱),2010,28(5):498-502.
Li F,Shen C H,Zeng Q L,Zhao Z L.Acta Sci. Circumst. (李飞,沈春花,曾庆玲,赵志领.环境科学学报),2012,32(7):1620-1630.
Pan Y Y,Shi Y L,Wang J M,Jin X L,Cai Y Q.Bull. Environ. Contam. Toxicol.,2011,87(2):152-157.
Li F S,Ni H,Huang H Y,Xu Z B,Zhang Q,Li C X,Huang W X,Jin T S.Environ. Sci.李法松,倪卉,黄涵宇,徐志兵,张倩,李长霞,黄文秀,金陶胜.环境科学),2017,38(1):327-332.
Zhang M,Tang F L,Xu J F,Yu B,Zhang W,Yao J L,Hu M H.Chin. J. Chromatogr.
张明,唐访良,徐建芬,余波,张伟,姚建良,胡敏华.色谱),2017,35(10):1073-1079.
Navarro I,de la Torre A,Sanz P,Pro J,Carbonell G,Martínez M Á.Environ. Res.,2016,149:32-39.
0
浏览量
8
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构