1.天津农学院 动物科学与动物医学学院,天津市农业动物繁育与健康养殖重点实验室,天津 300384
2.天津市农业科学院农业质量标准与检测技术研究所,天津 300381
郭永泽,硕士,研究员,研究方向:农产品质量安全与营养,E-mail:guoyz1971@126.com
李存,博士,教授,研究方向:兽医药理学与毒理学,E-mail:hhlicun@163.com
扫 描 看 全 文
王艺霞,杨琳燕,黄迪等.泡腾辅助液相微萃取/高效液相色谱法检测蜂蜜中7种喹诺酮类药物[J].分析测试学报,2022,41(03):327-333.
WANG Yi-xia,YANG Lin-yan,HUANG Di,et al.Detection of Seven Quinolones in Honey by High Performance Liquid Chromatography with Effervescent Assisted Liquid Phase Microextraction[J].Journal of Instrumental Analysis,2022,41(03):327-333.
王艺霞,杨琳燕,黄迪等.泡腾辅助液相微萃取/高效液相色谱法检测蜂蜜中7种喹诺酮类药物[J].分析测试学报,2022,41(03):327-333. DOI: 10.19969/j.fxcsxb.21062803.
WANG Yi-xia,YANG Lin-yan,HUANG Di,et al.Detection of Seven Quinolones in Honey by High Performance Liquid Chromatography with Effervescent Assisted Liquid Phase Microextraction[J].Journal of Instrumental Analysis,2022,41(03):327-333. DOI: 10.19969/j.fxcsxb.21062803.
以密度小于水且具有可切换亲水性的壬酸作为萃取剂,通过加入Na,2,CO,3,和H,2,SO,4,改变溶液pH值,使壬酸完成从疏水性到亲水性再到疏水性的转换,同时利用原位产生的CO,2,鼓泡加大接触面积,完成对分析物的萃取,建立了基于可切换亲水性溶剂的泡腾辅助液相微萃取(EA-LPME-SHS)/高效液相色谱-荧光检测法(HPLC-FLD)测定蜂蜜中7种喹诺酮类药物(QNs)的分析方法。最佳提取条件如下:萃取剂为200 μL壬酸;pH调节剂为400 μL 2.0 mol/L,Na,2,CO,3,和300 μL 2.0 mol/L H,2,SO,4,;提取时间为1.5 min。结果表明,5种喹诺酮类药物在2.0~200 μg/L范围内呈良好线性(诺氟沙星和环丙沙星为2.0~100 μg/L),相关系数(,r,2,)为0.999 5~0.999 9;在10、100、500 ng/g加标水平下,7种待测药物的回收率为62.8%~117%,日内(,n, = 3)和日间(,n, = 6)相对标准偏差(RSD)不大于6.2%,检出限为3.0 ng/g,定量下限为10 ng/g。该方法的提取过程均在注射器内完成,无需离心即可实现相分离,具有绿色环保、操作简便、省时等特点。
A high performance liquid chromatography-fluorescence detection(HPLC-FLD) method combined with an effervescent assisted liquid phase microextraction(EA-LPME) was established for the determination of seven quinolones(QNs) in honey,based on a switchable hydrophilic solvent(SHS),nonanoic acid with switchability and density lower than water.In the proposed method,the pH value of the solution was adjusted by adding Na,2,CO,3, and H,2,SO,4, separately,to make nonanoic acid complete the conversion from hydrophobicity to hydrophilicity and then to hydrophobicity.Meanwhile,the CO,2, bubbles generated in-situ increased the contact area,and consequently promoting the extraction of analytes.Unlike traditional liquid phase microextraction(LPME)performed in a centrifuge tube,this method with simultaneous extraction and enrichment was completed in the syringe to realize the phase separation without centrifugation.In order to improve the extraction efficiency,the type and volume of extractant,the type and volume of pH regulator and the extraction time were optimized.The optimum extraction conditions were as follows:extraction solvent:nonanoic acid(200 μL),pH regulators:2.0 mol/L Na,2,CO,3,(400 μL) and 2.0 mol/L H,2,SO,4,(300 μL),and extraction time:1.5 min.There were linear ranges of 2.0-100 μg/L for norfloxacin and ciprofloxacin,and 2.0-200 μg/L for the other five drugs,with correlation coefficients(,r,2,) of 0.999 5-0.999 9.The recoveries at three spiked levels of 10,100 and 500 ng/g for analytes ranged from 62.8% to 117%,with intra-day relative standard deviation(RSDs, ,n, = 3) and inter-day(,n, = 6) RSDs not more than 6.2%.The limits of detection and the limits of quantitation were 3.0 ng/g and 10 ng/g,respectively. To evaluate the practicability of the present metnod,three kinds of honey samples spiked with 100 ng/g QNs were examined under the optimized conditions for the extraction(,n, = 3),the recoveries for seven analytes ranged from 78.8% to 120%,with RSDs less than 5.1%.The results demonstrated that the developed method is simple,accurate,effective and environmentally friendly,which could be used for the determination of quinolones in honey samples.
高效液相色谱法可切换亲水性溶剂泡腾辅助液相微萃取蜂蜜喹诺酮类药物
high performance liquid chromatographyswitchable hydrophilic solventeffervescent assisted liquid phase microextractionhoneyquinolones
Di X,Wang X,Liu Y P,Guo X J,Di X.J. Sep. Sci.,2019,42(13):2255-2262.
Wang H L,Gao M,Gao J J,Yu N N,Huang H,Yu Q,Wang X D.Anal. Bioanal. Chem.,2016,408:6105-6114.
Vakh C,Pochivalov A,Koronkiewicz S,Kalinowski S,Postnov V,Bulatov A.Food Chem.,2019,270:10-16.
Tang W Y,Dai Y L,Row K H.Anal. Bioanal. Chem.,2018,410:7325-7336.
Wang C Z,Liu R,Zhang J H,Shen X G,Du X X,Kuang X,Feng K Y.J. Instrum. Anal. 王成真,刘戎,张嘉慧,沈祥广,杜小溪,匡徐,冯可莹.分析测试学报),2018,37(5):615-620.
Li X H,Yang Y Q,Miao J J,Yin Z D,Zhai Y J,Shi H M,Li Z N.Electrophoresis,2020,41(18/19):1584-1591.
Chen Z B,Wang X,Yin Y C,Chen G N.J. Instrum. Anal. (陈宗保,王星,尹月春,陈国南.分析测试学报),2019,38(2):176-181.
Fazaieli F,Mogaddam M R A,Farajzadeh M A,Feriduni B,Mohebbi A.J. Sep. Sci.,2020,43(12):2393-2400.
Vakh C,Pochivalov A,Andruch V,Moskvin L,Bulatov A.Anal. Chim. Acta,2016,907:54-59.
Farajzadeh M A,Abbaspour M,Kazemian R.J. Chromatogr. A,2019,1603:51-60.
Zhong S J,Meng B Z,Chen Z Y,Zeng H X,Zhou X R.J. Instrum. Anal. (钟佳胜,蒙碧珍,陈振阳,曾环想,周向荣.分析测试学报),2019,38(12):1493-1497.
Di X,Wang X,Liu Y P,Guo X J,Di X.J. Chromatogr. B,2019,(1118/1119):109-115.
Santos P A,das Graças Andrade Korn M,Lemos V A.Environ. Monit. Assess.,2017,189(9):444.
Hu X Z,Hong W,Zhang X,Peng M M,Xia H,Peng X T.J. Instrum. Anal. (胡西洲,洪伟,张仙,彭茂民,夏虹,彭西甜.分析测试学报),2021,40(5):754-759,766.
Oenning A L,Birk L,Eller S,de Oliveira T F,Merib J,Carasek E.J. Chromatogr. B,2020,1143:122069.
Pochivalov A,Timofeeva I,Vakh C,Bulatov A.Anal. Chim. Acta,2017,976:35-44.
Shih H K,Shu T Y,Ponnusamy V K,Jen J F.Anal. Chim. Acta,2015,854:70–77.
Lombardo-Agüí M,García-Campaña A M,Gámiz-Gracia L,Cruces-Blanco C.Talanta,2012,93:193-199.
Li K,Jin Y,Jung D,Park K,Kim H,Lee J.J. Chromatogr. A,2020,1614:460730.
0
浏览量
5
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构