华北理工大学 公共卫生学院,河北 唐山 063210
郝玉兰,硕士,副教授,研究方向:卫生化学分析,E-mail:haoyulan2011@163.com
扫 描 看 全 文
郭丽囡,王雅慧,闫萌等.基于掺杂金属有机骨架CeDUT-52分散固相萃取/高效液相色谱法检测水中的双酚类化合物[J].分析测试学报,2022,41(02):164-171.
GUO Li-nan,WANG Ya-hui,YAN Meng,et al.Detection of Bisphenols Compounds in Water by High Performance Liquid Chromatography with Dispersive Solid Phase Extraction Based on Ce-Doped DUT-52 Metal Organic Framework[J].Journal of Instrumental Analysis,2022,41(02):164-171.
郭丽囡,王雅慧,闫萌等.基于掺杂金属有机骨架CeDUT-52分散固相萃取/高效液相色谱法检测水中的双酚类化合物[J].分析测试学报,2022,41(02):164-171. DOI: 10.19969/j.fxcsxb.21052102.
GUO Li-nan,WANG Ya-hui,YAN Meng,et al.Detection of Bisphenols Compounds in Water by High Performance Liquid Chromatography with Dispersive Solid Phase Extraction Based on Ce-Doped DUT-52 Metal Organic Framework[J].Journal of Instrumental Analysis,2022,41(02):164-171. DOI: 10.19969/j.fxcsxb.21052102.
利用溶剂热法构筑了CeDUT-52吸附剂,将其用于水中双酚A(BPA)、双酚F(BPF)和双酚AF(BPAF) 3种双酚类化合物的分散固相萃取(DSPE),并结合高效液相色谱-紫外检测,建立了水中3种双酚类化合物的分析方法。采用X射线衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)和X射线能谱仪(EDS)对构筑的CeDUT-52吸附剂进行表征,结果显示金属Ce成功掺杂于八面体结构的DUT-52中,掺杂后的吸附剂粒径变小。实验考察了吸附剂用量、吸附时间、洗脱溶剂种类以及洗脱体积对水中3种双酚类化合物萃取效率的影响。结果显示,40 mg吸附剂在20 min内即可实现对目标物的完全吸附。采用最优DSPE条件,BPA和BPF在0.3~300 μg/L范围内,BPAF在0.6~600 μg/L范围内线性关系良好(,r, ≥ 0.999 8),检出限和定量下限分别为0.1~0.2 μg/L和0.3~0.6 μg/L,在1、5、10 μg/L 3个加标水平下的回收率为82.5%~101%,相对标准偏差(RSD)不大于10%,富集因子为92~102。该方法快速、灵敏,能够满足水中双酚类化合物的分析要求。
Bisphenols(BPs) may dissolve from pipeline or other plastic products and pollute water.It is very important to analyze the BPs in water rapidly and accurately,though the matrix of the water sample is complex and the target analytes are usually at trace level.Therefore,how to enrich and separate the target objects efficiently is the key point for the determination of BPs.In this paper,a Ce(Ⅲ) doped metal organic framework composite(CeDUT-52) was synthesized via a solvothermal method,and used as an effective adsorbent for dispersive solid phase extraction(DSPE) to enrich three BPs in water,including bisphenol A(BPA),bisphenol F(BPF) and bisphenol AF(BPAF).The structure and morphology of the CeDUT-52 was characterized by X-ray diffractometry(XRD),Fourier-transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS).The XRD,FT-IR and EDS results revealed that Ce was successfully doped into the octahedral DUT-52.Meanwhile,it was found in the SEM that the particle size of the doped adsorbent decreased from 2 μm to 500 nm.To acquire the optimal extraction conditions,effects of the CeDUT-52 usage(10,20,30,40 and 50 mg),adsorption time(5,10,15,20 and 25 min),elution solvent(methanol,acetonitrile,acetone and isopropanol) and elution volume(0.5 mL × 1,0.5 mL × 2,0.5 mL × 3 and 0.5 mL × 4) were investigated for the three BPs in water.Results showed that BPs could be completely adsorbed with 40 mg of adsorbent in 50 mL water within 20 minutes.Elution efficiency could reach 88.9%-101% with 0.5 mL × 3 of methanol.Under the optimal conditions,a simple and sensitive method for the detection of three BPs was established by high performance liquid chromatography-ultraviolet detection(HPLC-UV) with the CeDUT-52 based DSPE.The limits of detection(LOD),limits of quantitation(LOQ),accuracy and precision of the method were evaluated.The developed method showed a good linear relationship in the range of 0.3-300 μg/L for BPA and BPF,0.6-600 μg/L for BPAF with correlation coefficients(,r,),not less than 0.999 8.The LODs and LOQs were in the range of 0.1-0.2 μg/L and 0.3-0.6 μg/L,respectively.The recoveries for BPs in water samples at 3 spiked levels of 1, 5 and 10 μg/L ranged from 82.5% to 101%,with relative standard deviations(RSD) not more than 10%.The enrichment factors of the method were between 92 and 102.The proposed method was suitable for the rapid and sensitive determination of BPs in water samples.
双酚类化合物金属有机骨架掺杂分散固相萃取高效液相色谱水
bisphenol compoundsmetal organic frameworkdopingdispersive solid phase extractionhigh performance liquid chromatographywater
Liu X Y,Zhang H X,Liu M C.J. Instrum. Anal. (刘晓燕,张海霞,刘满仓.分析测试学报),2007,26(2):288-294.
Gao Y J.Mod. Chem. Ind. (高艳娇.现代化工),2019,39(5):71-75.
Cespedes R,Lacorte S,Ginebreda A,Barcelo D.Environ. Pollut.,2008,153(2):384-392.
Ren W J,Wang Z,Yang X H,Liu J N,Yang Q,Chen Y W,Shen S B.J. Ecol. Rural Environ. 任文娟,汪贞,杨先海,刘济宁,杨倩,陈英文,沈树宝.生态与农村环境学报),2017,33(4):372-378.
Lin Y,Shi Y,Jiang M,Jin Y,Peng Y,Lu B,Dai K.Environ. Pollut.,2008,153(2):483-491.
Hu J Y,Aizawa T.Water Res.,2003,37(6):1213-1222.
Jiang Z H,Xie W Y,Li X P,Zhang X Y.Asian J. Ecotox. (蒋志惠,谢文艳,李新平,张小莺.生态毒理学报),2016,11(4):1-9.
Hotchkiss A K,Rider C V,Blystone C R,Wilson V S,Hartig P C,Ankley G T,Foster P M,Gray C L,Gray L E.Toxicol. Sci.,2008,105(2):235-259.
GB5749-2006.Standards for Drinking Water Quality.National Standards of the People's Republic of China(生活饮用水卫生标准.中华人民共和国国家标准).
Akpotu S O,Lawal I A,Moodley B,Ofomaja A E.Chemosphere,2020,246:125729.
Shen X.J. Instrum. Anal. (沈霞.分析测试学报),2020,39(9):1105-1111.
Zeng S L,Gan N,Weideman M R,Cao Y T,Li T H,Sang W G.Chem. Eng. J.,2013,218:108-115.
Yang J,Li J Y,Qiao J Q,Cui S H,Lian H Z,Chen H Y.Appl. Surf. Sci.,2014,321:126-135.
Paszkiewicz M,Sikorska C,Leszczynska D,Stepnowski P.Water Air Soil Pollut.,2018,229(8):253.
Tanveer Z I,Huang Q W,Liu L,Jiang K Q,Nie D X,Pan H Y,Chen Y,Liu X S,Luan L J,Han Z,Wu Y J.J. Chromatogr. A,2020,1630:461515.
Salimi M,Behbahani M,Sobhi H R,Ghambarian M,Esrafili A.Appl. Organomet. Chem.,2020,34(8):5715.
Kim J,Chen B,Reineke T M,Li H,Eddaoudi M,Moler D B,O'keeffe M,Yaghi O M.J. Am. Chem. Soc.,2001,123(34):8239-8247.
Rodenas T,Van D M,García P E,Serra C P,Zornoza B,Kapteijn F,Gascon J.Adv. Funct. Mater.,2014,24(2):249-256.
Wei Y,Zhang Y R,Chen Q F,Xia Y.J. Instrum. Anal. (隗玉,张亚如,陈企发,夏炎.分析测试学报),2021,40(3):333-339.
Huang H,Li Y,Liu J,Tong J,Su X.Food Chem.,2015,185:233-238.
Gogoi C,Kumar A,Sk M,Biswas S.Micropor. Mesopor. Mater.,2021,311:110725.
Bon V,Senkovska I,Weiss M S,Kaskel S.CrystEngComm,2013,15(45):9572-9577.
Li T T,Liu Y M,Wang T,Wu Y L,He Y L,Yang R,Zheng S R.Micropor. Mesopor. Mater.,2018,272:101-108.
Yang J M,Ying R J,Han C X,Hu Q T,Xu H M,Li J H,Wang Q,Zhang W.Dalton Trans.,2018,47(11):3913-3920.
Li Z,Sun Y,Xing J,Xing Y,Meng A.J. Hazard. Mater.,2018,352:204-214.
Yang J M,Yang B C,Zhang Y,Yang R N,Ji S S,Wang Q,Quan S,Zhang R Z.Micropor. Mesopor. Mater.,2020,292:109764.
Wan X Y,Song H J,Zhao D,Zhang L C,Lv Y.Sens. Actuators B,2014,201:413-419.
Sun D,Liu W,Qiu M,Zhang Y,Li Z.Chem. Commun.,2015,51(11):2056-2059.
Yang Z W,Xu X Q,Liang X X,Lei C,Gao L H,Hao R X,Lu D D,Lei Z Q.Appl. Surf. Sci.,2017,420:276-285.
Ebrahim A M,Bandosz T J.ACS. Appl. Mater. Interfaces,2013,5(21):10565-10573.
Yan M,Jia Y Q,Qi P R,Wang Y H,Ji Q Q,Wang M M,Wang Q,Hao Y L.Chin. J. Chromatogr.
闫萌,贾叶青,齐沛茹,王雅慧,冀欠欠,王曼曼,王茜,郝玉兰.色谱),2021,39(3):316-323.
Li Y R,Lu P P,Cheng J C,Zhu X L,Guo W,Liu L J,Wang Q,He C Y,Liu S R.Talanta,2018,187:207-215.
Zhou Q X,Lei M,Li J,Zhao K F,Liu Y L.Sep. Purif. Technol.,2017,182:78-86.
Wang X Y,Deng C H.Talanta,2015,144:1329-1335.
Salehinia S,Ghoreishi S M,Maya F,Cerdà V.J. Environ. Chem. Eng.,2016,4(4):4062-4071.
0
浏览量
5
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构