1.湖北民族大学 医学部,湖北 恩施 445000
2.广西大学 医学院,广西 南宁 530004
3.广西壮族自治区人民医院 消化内科,广西 南宁 530021
4.湖北民族大学 化学与环境工程学院,湖北 恩施 445000
5.湖北民族大学 武陵山中药材检验检测中心,湖北 恩施 445000
张淇淞,博士,助理教授,研究方向:代谢组学,E-mail:zhangqisong@gxu.edu.cn
扫 描 看 全 文
杨宝,梁运啸,黄宗声等.基于超高效液相色谱-四极杆-静电场轨道阱质谱的结直肠腺瘤患者血清代谢组学研究[J].分析测试学报,2022,41(05):668-674.
YANG Bao,LIANG Yun-xiao,HUANG Zong-sheng,et al.Metabolomic Study on Serum of Colorectal Adenoma Patients Based on Ultra-high Performance Liquid Chromatography- Q Exactive Orbitrap Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(05):668-674.
杨宝,梁运啸,黄宗声等.基于超高效液相色谱-四极杆-静电场轨道阱质谱的结直肠腺瘤患者血清代谢组学研究[J].分析测试学报,2022,41(05):668-674. DOI: 10.19969/j.fxcsxb.21040603.
YANG Bao,LIANG Yun-xiao,HUANG Zong-sheng,et al.Metabolomic Study on Serum of Colorectal Adenoma Patients Based on Ultra-high Performance Liquid Chromatography- Q Exactive Orbitrap Mass Spectrometry[J].Journal of Instrumental Analysis,2022,41(05):668-674. DOI: 10.19969/j.fxcsxb.21040603.
采用超高效液相色谱-四极杆-静电场轨道阱质谱结合主成分分析、正交偏最小二乘判别分析对46例结直肠腺瘤患者(年龄57.8 ± 10.7岁)和45例健康人(年龄54.4 ± 8.2岁)的血清样本进行分析,通过变量权重投影分析和火山图筛选结直肠腺瘤患者血清中的代谢标志物,利用受试者工作特征曲线(ROC)验证代谢标志物的诊断能力。结果表明,两组血清的代谢轮廓有显著差异,筛选并鉴定了20个生物标志物,涉及缬氨酸、亮氨酸和异亮氨酸合成,花生四烯酸代谢、,α,-亚麻酸代谢、亚油酸代谢、氨酰-tRNA合成、鞘脂代谢、甘油磷脂代谢、色氨酸代谢,其生物标志物16-羟基棕榈酸、花生四烯酸、肌酸、缬氨酸、亮氨酸、色氨酸、,α,-亚麻酸、牛磺鹅脱氧胆酸、LysoPC(20∶3)的ROC曲线面积(AUC)均大于0.90,特异性与灵敏度较高,对于结直肠腺瘤筛查具有较高的诊断价值和临床应用潜力。研究结果可为基于代谢组学的结直肠腺瘤筛查提供参考资料。
The aim of this paper is to explore the metabolic biomarkers and regulation pathways of colorectal adenoma for better understanding of its pathogenesis.The serum samples of 46 colorectal adenoma patients(age 57.8 ± 10.7) and 45 healthy controls(age 54.4 ± 8.2) were analyzed by ultra-high performance liquid chromatography-Q exactive orbitrap mass spectrometry in an untargeted metabolomic approach. The metabolomics data acquired were analyzed using an unsupervised principal component analysis to visualize the grouping trends and detect outliers.A supervised orthogonal partial least squares discriminant analysis(OPLS-DA) was subsequently utilized to maximize the discrimination.The established OPLS-DA model was validated by permutation test for 200 times.Values of variable importance for projection(VIP) were obtained from the OPLS-DA model.Volcano plots of all metabolites were constructed based on the log,2,-transformed fold-change and log,10,-transformed ,p,-value.Then,the most altered serum metabolites responsible for the discrimination between two groups were screened based on the values of variable importance for projection(VIP ,>, 1.50) and volcano plot analysis(,p,<, 0.05 with fold change ,>, 1.50 or fold change ,<, 0.67),and further identified using the mzCloud and HMDB databases.The changed metabolic pathways were analyzed using MetaboAnalyst.ROC curves were used to verify the diagnostic ability of those metabolic biomarkers.The results showed that there were significant differences between the serum metabolic profiles of two groups.20 metabolic biomarkers were screened and identified,including essential amino acids,unsaturated fatty acids,sphingolipids,phospholipids and bile acids,and the corresponding disturbed metabolic pathways were valine,leucine and isoleucine biosynthesis,arachidonic acid metabolism,,α,-linolenic acid metabolism,linoleic acid metabolism,aminoacyl-tRNA biosynthesis,sphingolipid metabolism,glycerophospholipid metabolism and tryptophan metabolism.Among the 20 metabolic biomarkers,juniperic acid,arachidonic acid,creatinine,valine,leucine,tryptophan,linolenic acid,taurochodeoxycholic acid and LysoPC(20∶3) showed high specificity and sensitivity with their areas under the ROC curves(AUC)greater than 0.90,which meant strong diagnostic ability and potential clinical application in serum-based metabolomics screening for colorectal adenoma.This study provides some basic data that could be used to clarify the metabolic characteristics of colorectal adenoma.
结直肠腺瘤超高效液相色谱-四极杆-静电场轨道阱质谱代谢组学血清生物标志物
colorectal adenomaultra-high performance liquid chromatography-Q exactive orbitrap mass spectrometrymetabolomicsserumbiomarkers
Siegel R L,Miller K D,Jemal A.CA Cancer J. Clin.,2019,69(1):7-34.
Strum W B.N. Engl. J. Med.,2016,374(4):1065-1075.
Hoang G,Udupa S,Le A.Int. Rev. Cell Mol. Biol.,2019,347:191-223.
Xu T R,Liu X Y,Xu G W.J. Instrum. Anal. (徐天润,刘心昱,许国旺.分析测试学报),2020,39(1):10-18.
Liu Y Q,Wang Z H,He B S,Xie B,Huo M L,Fu W Q,Zhou Z,Abliz Z.J. Instrum. Anal. 刘亚琪,王中华,何秉淑,谢冰,霍美玲,傅文清,周帜,再帕尔•阿不力孜.分析测试学报),2020,39(1):108-114.
Ren X N,Liang Q L.J. Instrum. Anal. (任向楠,梁琼麟.分析测试学报),2017,36(2):161-169.
Yang Y,Wang Z P,Gao S H,Zhang F,Li M M,Zhong R Q,Chen W S.Chin. J. Pharm. Anal. (杨阳,王志鹏,高守红,张凤,李明明,仲人前,陈万生.药物分析杂志),2018,38(6):915-926.
Kim M,Vogtmann E,Ahlquist D A,Devens M E,Chen J.mBio,2020,11(1):e03186-19.
Kim E R,Kwon H N,Nam H,Kim J,Park S,Kim Y H.Sci. Rep.,2019,9(1):4786.
Gump E B T,Brezina S,Keski-Rahkonen P,Baierl A,Gsur A.Metabolites,2021,11(2):119.
Zhang Q S,Nong Y,Liu Z Q,Gong L Z.Anal. Chem.,2019,91(22):14458-14466.
Yue M,Jiang J,Gao P,Liu H,Qing G.Cell Rep.,2017,21(13):3819-3832.
Zhu J,Djukovic D,Deng L,Gu H,Himmati F,Chiorean E G,Raftery D.J. Proteome Res.,2014,13(9):4120-4130.
Murphy R A,Mourtzakis M,Mazurak V C.Curr. Opin. Clin. Nutr. Metab. Care,2012,15(3):246-251.
Calviello G,Serini S,Piccioni E.Curr. Med. Chem.,2007,14(29):3059-3069.
Pyne N J,Pyne S.Nat. Rev. Cancer,2010,10(7):489-503.
Pyne N J,Buri A E,Adams D R,Pyne S.Adv. Biol. Regul.,2017,68:97-106.
Kühn T,Stepien M,López-Nogueroles M,Damms-Machado A,Sookthai D,Johnson T,Roca M,Hüsing A,Maldonado S G,Cross A J,Murphy N,Freisling H,Rinaldi S,Scalbert A,Fedirko V,Severi G,Boutron-Ruault M C,Mancini F R,Sowah S A,Boeing H,Jakszyn P,Sánchez M J,Merino S,Colorado-Yohar S,Barricarte A,Khaw K T,Schmidt J A,Perez-Cornago A,Trichopoulou A,Karakatsani A,Thriskos P,Palli D,Agnoli C,Tumino R,Sacerdote C,Panico S,Bueno-De-Mesquita B,Van Gils C H,Heath A K,Gunter M J,Riboli E,Lahoz A,Jenab M,Kaaks R.J. Natl. Cancer Inst.,2019,112(5):516-524.
0
浏览量
7
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构