1.广东省科学院测试分析研究所(中国广州分析测试中心) 广东省化学危害应急检测技术重点实验室,广东省水环境污染在线监测工程技术研究中心,广东 广州 510070
2.沈阳工业大学 环境与化学工程学院,辽宁 沈阳 110870
雷永乾,博士,副研究员,研究方向:环境污染物快速检测技术,E-mail:yqlei@fenxi.com.cn
扫 描 看 全 文
孙泽飞,赵健,郭鹏然等.氮硫掺杂荧光碳量子点对水中汞离子的检测[J].分析测试学报,2021,40(12):1736-1743.
SUN Ze-fei,ZHAO Jian,GUO Peng-ran,et al.Detection of Mercury Ions in Water by Nitrogen and Sulfur-doped Fluorescent Carbon Quantum Dots[J].Journal of Instrumental Analysis,2021,40(12):1736-1743.
孙泽飞,赵健,郭鹏然等.氮硫掺杂荧光碳量子点对水中汞离子的检测[J].分析测试学报,2021,40(12):1736-1743. DOI: 10.19969/j.fxcsxb.21040104.
SUN Ze-fei,ZHAO Jian,GUO Peng-ran,et al.Detection of Mercury Ions in Water by Nitrogen and Sulfur-doped Fluorescent Carbon Quantum Dots[J].Journal of Instrumental Analysis,2021,40(12):1736-1743. DOI: 10.19969/j.fxcsxb.21040104.
基于Hg,2+,对碳量子点的荧光猝灭机制,建立了氮硫掺杂荧光碳量子点对水中Hg,2+,的快速检测方法。以柠檬酸钠、废水和二硫化四甲基秋兰姆作为碳、氮和硫源,通过一步水热法合成荧光碳量子点(CQDs)。考察了其光谱性质及pH值、反应时间、组分含量对荧光强度的影响,在其对Hg,2+,的检测过程中进一步考察荧光猝灭与反应时间、pH值的关系,并对猝灭反应动力学机理进行了分析。实验结果表明,Hg,2+,对CQDs的荧光猝灭反应快速,且溶液pH 7.0时荧光猝灭效果最优;荧光CQDs对Hg,2+,的荧光响应具有很好的选择性和抗干扰能力。在优化条件下,基于荧光CQDs的检测方法对Hg,2+,的检出限为0.95 μg/L,线性范围为1~6 μg/L。以地表水考察该方法的准确性,水样的加标回收率为100%~126%,相对标准偏差(RSD)为0.31%~3.9%。该方法适合于废水中Hg,2+,的现场、快速、便捷检测。
Mercury is one of the toxic and harmful heavy metal pollutants in the environment.It can enter the human body through the accumulation of food chain,thus damaging the human health.Recently,the control of mercury pollution has attracted much attention.The main detection methods for mercury in water involve inductively coupled plasma optical emission spectrometry(ICP-OES),atomic absorption spectrometry(AAS),atomic fluorescence spectrometry(AFS) and inductively coupled plasma mass spectrometry(ICP-MS).However,these methods generally could not meet the requirements for convenient,rapid and sensitive on-site detection.Fluorescence detection method has the advantages of simple operation,rapid response,high sensitivity,good selectivity,and independent of large-scale instruments,which could fully meet the requirements for rapid detection of mercury in water.Based on the fluorescence quenching mechanism of Hg,2+, on carbon quantum dots(CQDs),a rapid method based on nitrogen and sulfur doped fluorescent CQDs was established for the detection of Hg,2+, in water.The fluorescent CQDs were synthesized by one-step hydrothermal method with sodium citrate,waste water and tetramethylthiuram disulfide as carbon,nitrogen and sulfur sources.Effects of the spectral properties as well as pH value,reaction time and component content on fluorescence intensity were all investigated.In the process of Hg,2+, detection,the relationships of fluorescence quenching with reaction time and pH value were further investigated,and the kinetic mechanism of quenching reaction was analyzed.The experimental results showed that the fluorescence quenching reaction of Hg,2+, on CQDs was rapid, which has a high quenching effect at pH 7.0,while the fluorescent CQDs had good selectivity and anti-interference ability for Hg,2+,.Under the optimized conditions,the detection limit for Hg,2+, was 0.95 μg/L,and the linear range was 1-6 μg/L.The accuracy of this method was investigated with surface water,and the recoveries for actual water samples ranged from 100% to 126%,with relative standard deviations(RSD) of 0.31%-3.9%.This method was suitable for rapid and convenient on-site detection of Hg,2+, in waste water samples.
废水碳量子点(CQDs)汞快速检测
waste watercarbon quantum dots (CQDs)mercuryrapid detection
Gworek B,Dmuchowski W,Baczewska-Dabrowska A H.Environ. Sci. Eur.,2020, 32(1):128-147.
Lu C J, Guo N,Zhang J,Dong J,He Z F,Yin S H.J. Environ. Health(鲁长娟,郭娜,张菊,董杰,何振芳,殷山红.环境与健康杂志),2017, 34(5):423-426.
Du B Y,Yin R S,Fu X W,Li P,Feng X B,Maurice L.Environ. Int.,2021, 147:106336-106342.
Joshi B P,Lohani C R,Lee K H.Org. Biomol. Chem.,2010, 8(14):3220-3226.
Wu S Z,Sun N,Lu R,Zhao Y H,Wang Z S.Chin. J. Environ. Manage. (吴舜泽,孙宁,卢然,赵云皓,王兆苏.中国环境管理),2015, 7(1):21-28.
Gondal M A,Aldakheel R K,Almessiere M A,Nasr M M,Almusairii J A,Gondal B.J. Pharm. Biomed. Anal.,2020, 183:113153-113163.
Ma X,Zhang F,Pan J C,Guo P R,Ouyang G F.Chin. J. Anal. Chem. (马旭,张芳,潘佳钏,郭鹏然,欧阳钢锋.分析化学),2018, 46(12):1975-1981.
Valasques G S,dos Santos A M P,da Silva D L F,Cerqueira U,Ferreira S L C,dos Santos W N L,Bezerra M A.Food Chem.,2020, 318:126473-126479.
Leng J H,Wang L J,Liu L,Gao Y Q,Lin Z S, Wang H.J. Instrum. Anal. (冷金慧,王立军,刘亮,高亚倩,林忠胜,王华.分析测试学报),2018, 37(9):1071-1075.
Li T T, Sun X H,Zhang Y J,Zhao J,Nie Z Y.J. Instrum. Anal. (李彤彤,孙晓红,张彦瑾,赵瑾,聂志勇.分析测试学报),2021, 40(4):478-487.
Zhang G,Feng J J,Chai R T,Zhu W H,Kang Q W,Li H.Chin. J. Anal. Chem. (张国,冯建军,柴瑞涛,朱维晃,康倩文,李卉.分析化学),2019,47(4): 583-590.
El-Shabasy R M,Elsadek M F,Ahmed B M,Farahat M F,Mosleh K N,Taher M M.Processes,2021, 9(2):388.
Chen L J,Liu R Y,Zhao D,Yan Y H.Chin. J. Anal. Chem. (陈丽娟,刘仁勇,赵丹,闫叶寒.分析化学),2020, 48(8): 1067-1074.
Zhu H,Wang X L,Li Y L,Wang Z J,Yang F,Yang X R.Chem. Commun.,2009,34,5118-5120.
Zhang J,Zhang Y C,Li C J, Ma H Y,Li H, Xin C H,Li H Y.J. Instrum. Anal. 张洁,张越城,李承佳,马红燕,李恒,辛程宏,李昊阳.分析测试学报),2020, 39(7):894-899.
Yang Y H,Cui J H,Zheng M T,Hu C F,Tan S Z,Xiao Y,Yang Q,Liu Y L.Chem. Commun.,2012,48(3):380-382.
Wu W B,Zhang Y C,Ma H Y,Tian R,Liu X L.J. Instrum. Anal. (武文波,张越城,马红燕,田锐,刘晓莉.分析测试学报),2019, 38(4):471-476.
Tang L B,Ji R B,Li X M,Bai G X,Liu C P,Hao J H,Lin J Y,Jiang H X,Teng K S,Yang Z B,Lau S P.ACS Nano,2014,8(6):6312-6320.
Xu J G,Wang Z B.Fluorescence Analysis.Beijing:Science Press(许金钩,王尊本.荧光分析法.北京:科学出版社),2016.
0
浏览量
7
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构