1.西南交通大学 生命科学与工程学院,四川 成都 610031
2.乌鲁木齐市第十五中学, 新疆 乌鲁木齐 830046
张纯姑,硕士,实验师,研究方向:色谱分析,E-mail:zcg@swjtu.edu.cn
封顺,博士,教授,研究方向:色谱分析,E-mail:fengshunxd@hotmail.com
扫 描 看 全 文
谈晓佩,李珊珊,石海珠等.萘乙酸多孔磁性分子印迹聚合物微球的制备[J].分析测试学报,2021,40(12):1790-1795.
TAN Xiao-pei,LI Shan-shan,SHI Hai-zhu,et al.Preparation of Porous Magnetic Molecularly Imprinted Polymer Microspheres for Accurately Recognizing α-Naphthylacetic[J].Journal of Instrumental Analysis,2021,40(12):1790-1795.
谈晓佩,李珊珊,石海珠等.萘乙酸多孔磁性分子印迹聚合物微球的制备[J].分析测试学报,2021,40(12):1790-1795. DOI: 10.19969/j.fxcsxb.21031501.
TAN Xiao-pei,LI Shan-shan,SHI Hai-zhu,et al.Preparation of Porous Magnetic Molecularly Imprinted Polymer Microspheres for Accurately Recognizing α-Naphthylacetic[J].Journal of Instrumental Analysis,2021,40(12):1790-1795. DOI: 10.19969/j.fxcsxb.21031501.
该文发展了一种无皂液乳化技术制备萘乙酸(NAA)磁性分子印迹聚合物(mMIPs)多孔微球的方法。以甲基丙烯酸-苯乙烯聚合物前驱体为功能单体,NAA为模板分子,与Fe,3,O,4,磁流体和引发剂偶氮二异丁腈混合,采用“一锅法”快速制得NAA-mMIPs微球。采用扫描电镜、透射电镜、红外光谱仪等对微球进行了表征,结果表明该微球粒径约80 μm,且具有多孔结构,孔径在1~10 μm之间。等温吸附实验和Scatchard分析结果表明,该mMIPs微球对NAA同时存在高和低两种亲和位点,其解离常数和最大表观结合量分别为161.30 µg·mL,-1,、29.35 mg·g,-1,和-128.20 µg·mL,-1,、-19.50 mg·g,-1,。吸附动力学实验表明,该mMIPs可在120 min内对NAA达到吸附平衡,其吸附行为符合伪二级动力学模型,决速步为化学吸附。对实际番茄汁样品进行3水平的加标回收实验,回收率为78.7%~89.2%,相对标准偏差(RSD)小于3.9%(,n, = 3)。当NAA含量低至0.005 µg·mL,-1,时,平均回收率仍可高达80.3%(RSD ,<, 5.0%),该浓度远远低于国标或欧盟标准中对NAA残留量的规定(100、60 μg·kg,-1,)。实验结果表明所制备的mMIPs对NAA表现出高选择性和特异性,并且具有合成简单、操作简便等特点,可有效消除农产品复杂基质对NAA检测的影响,显著提高了鉴定的准确性和可靠性。
Molecular imprinted polymers(MIPs) play a important role in the separation and enrichment of trace substances due to their specific recognition capability.In this paper,a method for preparing porous magnetic MIPs(mMIPs) microspheres was developed via the oil-in-water soap-free liquid emulsification technique to cope with a widely used pesticide ,α,-naphthylacetic(NAA).The preparation was done by simply mixing methacrylic acid-styrene polymer precursor,NAA,Fe,3,O,4, magnetic fluid and 2,2-azobisisobutyronitrile together in one pot.The product was characterized by scanning electron microscopy,transmission electron microscopy and Fourier transform infrared spectroscopy,respectively.The results showed that it is a kind of microspheres with a size distribution about 80 μm.And there are lots of pores distributed in/on the particle with diameters ranging from 1 to 10 μm.Such a porous structure could effectively increase the specific surface area,the number of contact recognition sites and the column capacity of the MIPs,as well as the mass transfer rate.Adsorption kinetics experiments showed that the adsorption equilibrium could be reached in 120 minutes.Meanwhile,the results of the adsorption isotherms and Scatchard analysis revealed that there exist two type of affinity binding sites for NAA in the MIPs.The dissociation constant and apparent maximum binding capacity were found to be -128.20 µg·mL,-1, and -19.50 mg·g,-1, for the low affinity binding site,and 161.30 µg·mL,-1, and 29.35 mg·g,-1, for the high affinity binding site.As comparison,there only existed one type affinity binding site for none-imprinted MIPs with the dissociation constant and apparent maximum binding capacity of 61.39 µg·mL,-1, and 4.658 mg·g,-1,,respectively.Moreover,the results of the adsorption kinetics studies confirmed that the adsorption process matched the pseudo-second-order kinetic model well,indicating that it was controlled mainly by chemical adsorption.All results demonstrated the high specificity of mMIPs towards NAA.To investigate the feasibility of the mMIPs,they were used in the determination of NAA in real sample of tomato juice by high performance liquid chromatography with UV-Vis detector.The average recoveries for the sample at three spiked levels ranged from 78.7% to 89.2%,with relative standard deviations(RSDs) less than 3.9%(,n ,= 3).Notably,the average recoveries still could reach 80.3% even when the amount of NAA in tomato juice is only 0.005 μg·mL,-1, which is far lower than the maximum residue limits of NAA stipulated by GB and the European Union(100 and 60 μg·kg,-1,,respectively).All experimental results indicated that it was readily to perform the preparation with the proposed method,and the mMIPs exhibited many merits,including the high selectivity and specificity for NAA,the fast mass transfer rate and the easy operation.With the MIPs,the high matrix effects of real samples could be eliminated effectively,and the accuracy and reliability could be improved significantly for NAA determination in practice.
磁性分子印迹聚合物萘乙酸无皂液乳化法番茄汁
magnetic molecularly imprinted polymersα-naphthylaceticsoap-free liquid emulsification methodtomato juice
Pulgarin A M,Bermejo F G,Robles S F,Rodriguez S B.Phytochem. Anal.,2012,23(3):214-221.
Li W K,Chen J,Zhang H X,Shi Y P.Talanta,2017,168:136-145.
Zhu H,Dardick C D,Beers E P,Callanhan A M,Xia R,Yuan R C.BMC Plant Biol.,2011,11:138-158.
GB 2763-2019.National Food Safety Standard-Maximum Residue Limits for Pesticides in Food.Ministry of Agriculture of the People's Republic of China(食品安全国家标准-食品中农药最大残留限量.中华人民共和国国家标准).
European Food Safety Authority.Reasoned Opinion on the Review of the Existing Maximum Residue Levels(MRLs) for 1-Naphthylacetamide and 1-Naphthylacetic Acid According to Article 12 of Regulation(EC) No 396/2005. [2015-08-11]. https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4213https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4213.
Sánchez F G,Blanco C C.Microchim. Acta,1989,98(1):49-54.
Chen H,Guo X F,Zhang H S,Wang H.J. Chromatogr. B,2011,879:1802-1808.
Wang D X,Zhao Y M,Chen W.Anal. Instrum. 王东新,周耀明,陈维.分析仪器),2003,(3):35-37.
Yang X L,Zheng G H,Lin Z M,Luo H E,Zhu J T,Chen A M.Guangzhou Chem. (杨学灵,郑国华,林泽明,罗海恩,朱佳焘,陈爱民.广州化学),2018,43(3):40-43.
Archer T E,Stokes J D.J. Agric. Food Chem.,1983,31(2):286-288.
Maiti B,Desai S R,Krishnamoorthy T S.Analyst,1988,113(4):667-668.
Kong D Y,Shi L L,Shan Z J,Ge F,Gao S X.J. Instrum. Anal. (孔德洋,石利利,单正军,葛峰,高士祥.分析测试学报),2010,29(4):382-385.
Hu X K,Zou H M,Xue Y.Phys. Test. Chem. Anal.:Chem. Anal. (胡晓科,邹海民,薛勇.理化检验:化学分册),2019,55(3):309-312.
Heberer T,Stan H J.J. AOAC Int.,1996,79(6):1428-1433.
Terashi A,Kido A,Shinohara R.Bunseki Kagaku,1985,34(7):420-422.
Guan W B,Xu P J,Wang K,Song Y,Zhang H Y.Food Chem. Toxicol.,2011,49(11):2869-2874.
Esparza X,Moyano E,Cosialls J R,Galceran M T.Anal. Chim. Acta,2013,782:28-36.
Song M X,Guan J,Chen L,Shu Y,Xu Q,Hu X Y.J. Instrum. Anal. (宋敏霞,管杰,陈璐,舒韵,徐琴,胡效亚.分析测试学报),2021,40(9):1367-1373.
Zeng G L,Ma X G,Fan Y M.J. Instrum. Anal. (曾国龙,马晓国,樊银明.分析测试学报),2020,39(6):749-755.
Zhu X P,Wang Y, An Y, Zhang C F,Wang Z P.China Meas. Test. (朱霞萍,王勇,安艳,张传峰,王泽鹏.中国测试),2021,47(9):52-60.
Cai Y,He X,Cui P L,Yuan W Z,Wang J P,Liu J.Food Chem.,2020,319:1-7.
Malik M I,Shaikh H,Mustafa G,Bhanger M I.Sep. Purif. Rev.,2019,48(3):179-219.
Shahrebabak S M,Faraji M,Saber-Tehrani M,Shabanian M,Aberoomand-Azar P.Chromatographia,2020,83(4):863-871.
Han Y H,Wang Z Q,Jia J,Bai L G,Liu H Y,Shen S G.Food Chem.,2020,311:1-8.
Li S S,Yin C,Ren S Y,Yang T,Wang J D,Feng S.J. Sep. Sci.,2015,38(15):2573-2579.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构