1.湖南师范大学 医学院,湖南 长沙 410013
2.湖南农业大学 食品科学技术学院 食品科学与生物技术湖南省重点实验室,湖南 长沙 410128
3.湖南省农业科学院 湖南省农产品加工研究所,湖南 长沙 410125
郑郁,博士,讲师,研究方向:食品与药品分析研究,E-mail:lixiazheng@sina.com
李跑,博士,副教授,研究方向:食品分析与化学计量学研究,E-mail:lipao@live.cn
扫 描 看 全 文
余梅,李尚科,戴雪婧等.一种基于近红外光谱技术的不同品种及掺假三七的无损鉴别分析研究[J].分析测试学报,2021,40(09):1374-1379.
YU Mei,LI Shang-ke,DAI Xue-jing,et al.A Non-destructive Identification Method for Different Varieties and Adulterate Notoginseng Based on Near-infrared Spectroscopic Technique[J].Journal of Instrumental Analysis,2021,40(09):1374-1379.
余梅,李尚科,戴雪婧等.一种基于近红外光谱技术的不同品种及掺假三七的无损鉴别分析研究[J].分析测试学报,2021,40(09):1374-1379. DOI: 10.19969/j.fxcsxb.20122904.
YU Mei,LI Shang-ke,DAI Xue-jing,et al.A Non-destructive Identification Method for Different Varieties and Adulterate Notoginseng Based on Near-infrared Spectroscopic Technique[J].Journal of Instrumental Analysis,2021,40(09):1374-1379. DOI: 10.19969/j.fxcsxb.20122904.
基于近红外光谱技术与化学计量学方法,提出了一种不同品种及掺假三七的快速无损鉴别方法。分别采集景天三七、菊三七、血三七、田三七完整、粉末及掺假样品的近红外光谱,采用单一和组合预处理方法消除光谱中的干扰,筛选出最佳的预处理方法;结合主成分分析法建立不同品种以及掺假三七样品的鉴别模型。结果表明:结合主成分分析,采用原始光谱即可实现粉末及掺假样品的100%鉴别分析,而完整样品由于受到物理性状的干扰,其原始光谱数据的品种鉴别率仅为9.38%;而经连续小波变换预处理后可达93.75%。采用组合预处理方法可以进一步消除光谱存在的多种干扰,显著提高完整样品的鉴别准确性,采用去偏移 + 一阶导数、去偏移+连续小波变换以及二阶导数+标准正态变量变换预处理方法预处理后,完整样品的鉴别准确率达到了93.75%。以上结果表明,采用近红外光谱技术与化学计量学方法可有效实现对不同品种以及掺假三七的快速无损鉴别分析。
Based on near-infrared spectroscopy and chemometrics, a rapid and non-destructive identification method for different varieties and adulterate ,notoginseng, was proposed. Meanwhile, samples of ,Sedum notoginseng,, ,Chrysanthemum notoginseng,, ,Xue notoginseng, and ,Tian notoginseng, were collected, and the near-infrared spectra for complete, powder and adulterated samples were obtained. Single and combined pretreatment methods were used to eliminate the interferences in the spectra, in which the best pretreatment method was screened out. Combined with the principal component analysis method, the identification models for different varieties and adulterated samples were established. Results showed that with the original spectra of powder and adulterated samples,100% identification accuracy could be obtained. Affected by the physical properties,the identification accuracy for the complete samples was 9.38%,but the value could reach 93.75% with the help of continuous wavelet transform. The combined pretreatment method could be used to eliminate the various interferences in the spectra, and the optimization pretreatment method could significantly improve the identification. With the help of De-bias + first derivative, De-bias + continuous wavelet transform, and second derivative + standard normal variable transformation, the identification accuracy of complete samples reached 93.75%. The above results showed that the rapid and non-destructive identification of different varieties and adulterate ,notoginseng, could be realized by near-infrared spectroscopy technique combined with chemometrics.
近红外光谱技术三七掺假无损鉴别主成分分析
near-infrared spectroscopynotoginsengadulteratenon-destructive identificationprincipal component analysis
Liu F, Wang Y Z, Yang C Y, Jin H. Spectrosc. Spectral Anal.刘飞, 王元忠, 杨春艳, 金航. 光谱学与光谱分析), 2015, (1): 108-112.
Masuoka N, Matsuda M, Kubo I. Food Chem., 2012, 131(2): 541-545.
Sampaio P S, Soares A, Castanho A. Food Chem., 2018, 242: 196-204.
Chu X L, Shi Y Y, Chen P, Li J Y, Xu Y P. J. Instrum. Anal.(褚小立, 史云颖, 陈瀑, 李敬岩, 许育鹏. 分析测试学报), 2019, 38(5): 603-611.
Chu X L, Chen P, Li J Y, Liu D, Xu Y P. J. Instrum. Anal.(褚小立, 陈瀑, 李敬岩, 刘丹,许育鹏. 分析测试学报), 2020, 39(10): 1181-1188.
Zhang J, Hu Y, Zhou L X, Li B Y. J. Instrum. Anal.(张进, 胡芸, 周罗雄, 李博岩. 分析测试学报), 2020, 39(10): 1196-1203.
Li P, Zhang X X, Li S K, Du G R, Jiang L W, Liu X. Sensors, 2020, 20(6): 1586.
Li Y, Zhang J, Xu F R, Wang Y Z, Zhang J Y. Spectrosc. Spectral Anal.李运, 张霁, 徐福荣, 王元忠, 张金渝. 光谱学与光谱分析), 2017, (1): 70-74.
Zhong Y L, Le Z Y. J.Jiangxi Univ. Tradit. Chin. Med.(钟玉兰, 乐智勇. 江西中医药大学学报), 2018, (3): 70-73,76.
Liu Y D, Ying Y B, Fu X P. Spectrosc. Spectral Anal.(刘燕德, 应义斌, 傅霞萍. 光谱学与光谱分析), 2005, 25(11): 1793-1796.
Barnes R J,Dhanoa M S, Lister J S. Appl. Spectrosc., 1989, 43(5): 772-777.
Su W H, Sun D W. J. Food Eng., 2017, 200: 59-69.
Lu H Y, Wang S S, Cai R, Meng Y, Xie X, Zhao W J. J. Pharm. Biomed., 2012, 59: 44-49.
Li S, Zhang X, Shan X. Food Chem., 2017, 218(31): 231-236.
Li J, Li S K, Jiang L W, Liu X, Ding S H, Li P. J. Instrum. Anal.(李杰, 李尚科, 蒋立文, 刘霞, 丁胜华, 李跑. 分析测试学报), 2020,39(11): 1344-1350.
Diwu P Y, Bian X H, Wang Z F, Liu W. Spectrosc. Spectral Anal.(第五鹏瑶, 卞希慧, 王姿方, 刘巍. 光谱学与光谱分析), 2019, 39(9): 2800-2806.
Bian X H, Wang K Y, Tan E X, Diwu P Y, Zhang F, Guo Y G. Chemom. Intell. Lab. Syst., 2020, 197: 103916.
0
浏览量
4
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构